Европа (спутник Юпитера); шанс отыскать внеземную жизнь

Европа (спутник Юпитера) — шанс отыскать внеземную жизнь

Европа – шестой по счёту спутник Юпитера. Поверхность его представляет собой ледяную корку из водного льда от 10 до 30 км. Под коркой – жидкий океан глубиной 20-30 км. Ниже океана идёт толстый слой горных пород, а в центре планеты расположено металлическое ядро.

Вокруг Юпитера, отстоящего на расстоянии 670 900 км, Европа облетает за 3.5 суток на скорости 50 000 км/ч, обращена к планете всегда одной стороной. Размерами она уступает Луне, но имеет схожую плотность. В составе спутника имеются силикатные породы, и это делает её схожей с планетами земной группы.

Атмосфера Европы очень разреженная и имеет в своём составе молекулярный кислород. Разреженность настолько сильная, что давление у поверхности равно около 1/100000000000 части земной.

С большой вероятностью можно считать, что этот сателлит Юпитера, как и остальные галилеевы спутники Галилеевы спутникиСобирательное название 4 крупнейших спутников Юпитера: Ио, Европы, Ганимеда и Каллисто , сформировался из диска пыли и газа, окружавшего планету. На это указывает форма орбит спутников – они практически круговые.

Жизнь на Европе

Мощная гравитация Юпитера помогает генерировать приливные силы, которые многократно растягивают и ослабляют луну. Но стрессы, которые создали раздробленный ландшафт Европы, лучше всего объясняются тем, что ледяная оболочка плавает в океане жидкой воды.

«Тот факт, что под поверхностью Европы находится жидкая вода, которую мы знаем из предыдущих миссий, в частности из наблюдений магнитометра, собранных аппаратом Galileo в 1990-х, делает ее одной из самых интересных потенциальный целей для поиска жизни», говорит профессор Эндрю Коутс из Лаборатории космических исследований Мулларда в графстве Суррей, Великобритания.

Соленая глубина Европы может доходить до 80-170 километров в глубь спутника, а значит, она может содержать в два раза больше жидкой воды, чем все океаны Земли.

И хотя вода является одной из важнейших предпосылок для жизни, океан Европы может иметь и другие — такие как источник химической энергии для микробов. Более того, океан может взаимодействовать с поверхностью при помощи ряда средств, включая теплые капли льда, поднимающиеся по ледяной оболочке снизу вверх. Поэтому изучение поверхности может дать ключ к тому, что происходит в океане.

Теперь NASA начинает две миссии, чтобы исследовать этот интригующий мир. Обе они обсуждались на 48-й Лунной и планетарной научной конференции (LPSC) в Хьюстоне.

Подледная жизнь вне Земли: что мы знаем о Европе, спутнике Юпитера

Возможно, внеземная жизнь гораздо ближе к нам, чем кажется, поскольку жидкая вода, которая нужна для возникновения и и подднржания существования аналога земной жизни, не редкость в Солнечной системе. Так, уже доказано (или почти доказано) существование океанов жидкой воды у ряда спутников планет-гигантов.

Насколько известно, лед есть даже в кратерах самой близкой к Солнцу планете — Меркурии. Вероятно, там лед иногда тает, так что вода время от времени может образовываться и там, хотя, наверное, ненадолго. Но на Европе, спутнике Юпитера, жидкая вода совершенно точно существует под многокилометровой толщей льда. Может быть, там есть и жизнь, хотя это нужно доказать. Что нам известно об этом спутнике Юпитера?

Все началось с обнаружения гейзеров

О неоднородной поверхности Европы известно давно, как и о том, что ее поверхность — лед. Долгое время считалось, что спутник Юпитера покрыт многокилометровым слоем льда, так что спутник представляет собой нечто вроде снежка с каменным ядром внутри. Но, как оказалось, реальность гораздо интереснее — космический аппарат «Галилео» обнаружил признаки существования гейзеров над поверхностью Европы.

За время своей научной миссии он 11 раз облетел Европу с минимальным расстоянием от поверхности в несколько сотен километров. Изучив переданные аппаратом данные, ученые выяснили, что в нескольких случаях показания магнитометра очень сильно менялись. Так случилось, в частности, 16 декабря 1997 года, когда расстояние до поверхности спутника Юпитера составило всего 206 километров. Ученые предположили, что «Галилео» прошел через гейзер.

Орбитальный телескоп «Хаббл» помог доказать существование гейзеров. Ну а раз они есть, значит, подо льдом Европы — жидкая вода, и ее много. Она может быть (и скорее всего это так) соленой, причем соль может быть не поваренной, а «английской», т.е. это калийная соль. Но в любом случае есть далеко ненулевой шанс существования под поверхностью Европы жизни — хоть микроскопической, хоть многоклеточной.

Глубина океанов (вернее, океана) Европы может достигать 80-179 км, а значит, на спутнике Юпитера воды примерно в два раза больше, чем содержат все океаны Земли.

Какие ваши доказательства?

Конечно, у ученых нет прямых доказательств существования жизни на Европе, но зато есть косвенные, и это не один набор данных. В частности, в 2013 году исследователи Калифорнийского университета заметили следы присутствия перекиси водорода. Она необходима для процесса, который называется метаногенезом — образованием метана анаэробными археями.

Кроме ресурсов вроде перекиси для существования жизни нужна еще тепловая энергия. И она, скорее всего, тоже есть на Европе. Есть несколько предположений насчет возможности существования жидкой воды на Европе. Одна из них — гравитационное воздействие спутника с газовым гигантом. Европа вращается вокруг Юпитера, благодаря чему внутренние слои смещаются и деформируются под воздействием гравитации. Все это приводит к трению с генерацией тепла. Разогревается мантия луны Юпитера, которая нагревает придонные слои океана. Возможно, теплее всего на полюсах спутника — там должен генерироваться максимальный объем тепла.

Читать еще:  Планета Сатурн - шестая от солнца. Газовый гигант

Этот эффект называется «приливный разогрев» и не является уникальным в Солнечной системе. У ученых есть все основания считать, что приливный разогрев характерен и для других спутников планет-газовых гигантов. По мнению Йоахима Заура, планетолога из Кельнского университета, Европа — один из лучших кандидатов на обнаружение внеземной жизни, поскольку здесь жидкая вода взаимодействует с силикатной мантией. Это значит, что минеральные соединения вымываются, поставляя ресурсы для живых организмов (если они там есть, конечно).

Кроме трения, есть и еще одна возможность — вулканическая активность. Если подо льдом есть вулканы, то они создают необходимые для существования жизни условия. Примеры есть на Земле — это гидротермальные источники на дне океанов нашей планеты.

Еще есть далеко ненулевая вероятность попадания кислорода в воду. Некоторые ученые предполагают, что этот элемент образуется на поверхности Европы под воздействием солнечного ветра, а затем попадает в океан уже в ходе чисто геологических процессов. Правда, концентрацию кислорода в воде пока что определить невозможно — нужна специализированная миссия.

Что касается самой жизни, то о возможной конфигурации экосистем рассказывает созданный около 20 лет назад документальный фильм BBC «Естественная история инопланетянина» (Natural History of an Alien). Его создатели считают, что в основе трофической цепочки будут находиться хемотрофные бактерии. Они будут формировать слои органических отложений на дне океана, а другие живые организмы, будут этими отложениями питаться. Эти организмы — аналог травоядных организмов на Земле. Соответственно, будут существовать и хищники, которые могут быть похожими на акул.

Миссии? А пожалуйста

Europa Clipper

NASA запускает этап сборки и тестирования новой станции. Аппарат планируют отправить в 2024 году. Он будет исследовать ледяную поверхность и подледный океан спутника Европы.

Главная цель проекта Europa Clipper — изучение спутника Юпитера. Особый интерес для исследователей представляет как раз уникальный океан Европы. Сейчас почти никто не сомневается в его существовании.

Старт миссии нацелен на 2024 год. Аппарат запустит в космос ракета-носитель SLS. Продолжительность полета к спутнику составит 7 лет. Основная научная программа продлится 109 дней.

Что будет включать в себя миссия к Европе?

  • Сбор точной информации о внутреннем океане;
  • сбор картографических данных о рельефе и характере поверхности;
  • поиск следов водяного пара, которые могут появляться из-под ледяной коры.

Основные ее характеристики:

  • Наличие дисковой антенны диаметром 3 метра для обмена данными с Землей.
  • Две массивные солнечные батареи, которые будут разворачиваться в космосе словно крылья. Они обеспечивают электропитанием системы зонда. Площадь батарей — 90 кв.метров.
  • Габариты станции в разложенном состоянии будут больше длины баскетбольного поля в 30,5 метров.

В этом году начнут работы со всеми приборами, а в следующем — комплексные испытания станции. Модуль двигателя корабля будут строить в Лаборатории прикладной физики Джона Хопкинса в штате Мэриленд. Ядро модуля состоит из двух цилиндров, расположенных друг на друге. Их высота составляет около 3 м. Они содержат двигательные баки и 16 ракетных двигателей.

Jupiter Icy Moon Explorer (JUICE)

Это многоцелевой проект, который предполагает изучение не только Европы, но еще и Ганимеда и Каллисто. Что касается Европы, то ученые планируют для JUICE 2 облета на высоте 400-500 км от поверхности спутника. К сожалению, полноценное изучение Европы потребует около 50-100 облетов, что пока не представляется возможным. Тем не менее, в течение 36 дней аппарат будет изучать Европу подробнейшим образом, находясь в непосредственной близости. И еще около года займут удаленные исследования. Цели изучения спутника Юпитера:

  • Определение состава веществ, не относящихся к ледовому покрытию.
  • Исследование водоемов под наиболее активными местами. Эти исследования помогут выяснить, насколько жидкость океана Европы похожа по составу на земные океаны.
  • Исследование процессов, происходивших относительно недавно (считается, что поверхность Европы очень молодая — возраст не превышает 180 млн лет, а возраст полыней, периодически появляющихся на поверхности, не превышает 50—100 тыс. лет). Также предстоит выяснить геологическую активность спутника.

Экзотические миссии

Если две миссии выше — утверждены, то другие, лишь предполагаемые, пока обсуждаются. Одна из наиболее интересных — проникновение через трещину под лед. Сделать это сложно, но возможно. Такая миссия будет включать два аппарата. Первый будет нести в себе второй, доставив его под лед.

Второй же может выглядеть как «плавучий вездеход», который успешно прошел испытания в 2019 году в озере близ Уткиагвика, Аляска.

Называется этот модуль Buoyant Rover for Under-Ice Exploration. Он сконструирован таким образом, чтобы не тонуть, а ползать по нижней части морского льда. У него положительная плавучесть, благодаря чему море прижимает его ко льду снизу, где он и ползает, собирая научные данные.

В ходе испытаний робот непрерывно находился подо льдом в течение 42 часов и 30 минут.

В целом, надежды ученых можно выразить словами специалиста из NASA, Мохита Мелвани Дасвани. Он занимается моделированием условий Европы, включая состав и физические свойства ядра, слоя силикатных пород и океана. Дасвани заявил следующее: «Европа — один из наших лучших шансов найти жизнь в нашей Солнечной системе. Миссия NASA Europa Clipper будет запущена в ближайшие несколько лет, и поэтому наша работа направлена ​​на подготовку к миссии, которая будет изучать вопрос обитаемости Европы».

Жизнь на Европе без фотосинтеза

Без солнечного света жизнь на Европе никогда не разовьет фотосинтез. Но это не обязательное требование. На Земле большинство растений используют энергию Солнца для приготовления пищи, и не едят другие живые существа для питания. Они известны как автотрофы. Но есть автотрофы, которым Солнце не нужно. Это бактерии, которые размножаются с использованием тепла, исходящего от мантии Земли. Оно выходит из гидротермальных жерл на морском дне.

Во время недавней экспедиции к глубоководным гидротермальным источникам исследователи из Института морской микробиологии им. Макса Планка и Кластера мастерства MARUM обнаружили мидии, которые имеют свои собственные «топливные элементы» на борту. Это симбиотические бактерии, использующие водород в качестве источника энергии.

Читать еще:  Нашли ошибку?

Европа отвечает элементарными требованиями для существования жизни. Наличие жидкой воды обеспечивает доступ ко многим другим элементам. Это происходит благодаря различным химическим реакциям. Так получаются свободный кислород, перекись водорода, диоксид углерода и диоксид серы. В сочетании с железом, а также такими элементами, как фосфор, эти процессы в конечном итоге приведут к получению всех необходимых соединений.

Жизнь на Европе, в ее океанах, может быть не только микробной, несмотря на чрезвычайно высокое давление. На Земле угорь Simenchelys parasiticus спокойно живет на глубине более километра. А тихоокеанская гадюка охотится на добычу в 4 километрах ниже поверхности.

Mariana snailfish обитает на глубинах более 8 километров.

Магнитное поле Юпитера не оставляет шанса бактериям

Магнитосфера Юпитера бомбардирует Европу высокоэнергетическими электронами с энергиями в мегаэлектронвольтном диапазоне.

«Простые теории, дающие глубину проникновения электронов в воду работают только для чрезвычайно высоких энергий этих частиц, – говорит Марти Гадипати из Лаборатории реактивного движения NASA. – Даже в мегаэлектронвольтном диапазоне у нас нет никаких лабораторных данных о проникновении частиц в лед, содержащий органические соединения. Это очень важно для астробиологии».

Гадипати помещал тестовый образец органического материала за куском льда и затем “расстреливал” его из электронно-лучевой пушки. Меняя толщину льда, можно было пронаблюдать влияние пучка электронов на органическую материю. В этом эксперименте измерялась не только глубина проникновения самих электронов, но и вторичный эффект – действие фотонов, выбитых из молекул льда столкновениями с электронами.

«Эти фотоны могут проникать намного глубже и вызывать повреждения органических соединений», – говорит Гадипати.

Немаловажным фактором является также время проведения эксперимента. Кратковременное воздействие электронов и фотонов может быть перенесено организмом без последствий, тогда как длительное их влияние скорее всего окажется губительным.

В своих экспериментах сотрудники Гадипати изучали менее энергетические электроны, энергия которых в 10000 раз меньше, чем у электронов, посылаемых к Европе магнитным полем Юпитера. Такой выбор был обусловлен самим характером работы. До этого никто не занимался изучением глубины проникновения электронов в лед (только в воду), а на небольших энергиях эта глубина имеет явную связь в энергией частиц.

Внутреннее строение Европы – спутника Юпитера

В ходе исследования рассматривались три разных сценария бомбардировки с увеличивающейся энергией электронов. В двух экспериментах учитывались возможные вариации энергии частиц по мере их проникновения в толщу льда. Повреждения, вызываемые электронами в изучавшихся диапазонах энергий, от раза в разу менялись, но общую картину установить удалось.

На основании ее можно получить оценку глубины проникновения электронов с энергией 10 мегаэлектронвольт – от 60 до 80 сантиметров, если зависимость глубины от энергии для них примерно та же.

Europa Clipper: как устроена главная миссия НАСА 2020-х годов

В середине 2020-х годов НАСА планирует отправить к шестому и крупнейшему спутнику Юпитера — Европе — миссию Europa Clipper (рабочее название — Europa Multiple-Flyby Mission). Ранее «Хайтек» рассказывал о планах агентства на 2020-е годы, теперь мы рассказываем об особенностях главной миссии НАСА на этот период и том, почему ученым важно изучать отдаленные части Солнечной системы.

Читайте «Хайтек» в

История Europa Clipper

Изначально Europa Clipper входила в большую международную космическую программу Europa Jupiter System Mission, которой занимались НАСА, Роскосмос, Европейское космическое агентство и Японское космическое агентство. Тогда миссия называлась Jupiter Europa Orbiter (JEO) и должна была отправиться на орбиту Европы в 2020 году.

В 2011 году Американский конгресс отозвал программу из-за высокой стоимости проекта — $4,7 млрд — и перенаправил эти средства на Марсианскую программу. Кроме того, в то время инженеры не до конца представляли, как посадить спускаемый аппарат на поверхность Европы, поскольку детализация изображений, полученных с предыдущей миссии по изучению этой луны, не позволила НАСА составить полноценную карту спутника Юпитера.

Основной интерес для изучения Европы представляет собой гигантский океан, который находится на глубине в 20–30 км подо льдом — гипотетически, в нем могут быть условия для формирования жизни. При этом ученые и сейчас не понимают, как запустить ровер в этот океан, однако уже тестируют в Антарктиде роботов, которых в дальнейшем отправят к Европе. Есть вероятность, что спускаемые аппараты будут отправлены к Европе в составе уже следующей миссии по изучению этого спутника. Окончательное решение будет принято после запуска космической обсерватории нового поколения «Джеймс Уэбб», которая сделает подробные снимки поверхности Европы.

Практически сразу НАСА представила наследника миссии JEO — проект Europa Clipper, орбитальный зонд стоимостью $2 млрд без учета стоимости ракеты-носителя Atlas V 551 и запуска. Конгресс принял эти расчеты, и инженеры начали разрабатывать миссию, несмотря на отказ от некоторого оборудования — например, радиоизотопного генератора энергии нового поколения Advanced Stirling Radioisotope Generator (ASRG). Текущая стоимость проекта — $1 млрд, однако независимые аудиторы называют сумму до $3,5 млрд с учетом полного сопровождения миссии.

Основные принципы миссии Europa Clipper

Сейчас НАСА рассчитывает, что Europa Clipper будет запущена не раньше 2025 года. Миссия должна обеспечить гарантированные периоды работоспособности зонда в районе Европы не менее 109 дней. Всего время исследования составит 3,5 года, за время которых зонд совершит 45 облетов спутника на высоте от 2,7 тыс. до 25 тыс. км. Для сравнения, максимальное сближение «Галилео» составляло 200 км.

В связи со значительной удаленностью Юпитера от Земли и высокой массой самого аппарата наиболее практичным способом доставки Europa Clipper является использование сверхтяжелой ракеты-носителя.

Пока не ясно, какая из существующих ракет-носителей будет использована в этой миссии. С одной стороны, использование сверхтяжелой SLS стоимостью $876 млн в два раза дороже, чем цена за аналогичные прототипы Delta IV Heavy или сверхтяжелой Falcon Heavy. С другой, пока только SLS может доставить Europa Clipper до Юпитера напрямую и без гравитационных маневров — менее, чем за три года. Это снизит стоимость запуска на несколько сотен миллионов долларов за счет сокращения расходов на зарплаты сотрудникам миссии. На текущий момент НАСА не сделало заказ на разработку ракеты-носителя для этой миссии.

Читать еще:  Планета Венера - вторая от Солнца

Чем Europa Clipper будет заниматься во время своей миссии

  • Исследовать Европу на предмет ее способности к формированию и в идеале — поддержанию жизни.
  • Изучить поверхность Европы и сделать максимально подробную карту спутника для дальнейшей работы спускаемого аппарата в случае, если НАСА решит отложить его до будущей миссии.
  • Подтвердить существование подледного океана и найти полыньи, в которые можно спустить роверы. Кроме того, в рамках миссии ученые должны оценить толщину льда на спутнике.

В случае, если Europa Clipper будет отправлена к Юпитеру не позднее 2025 года, зонд прибудет к Европе к 2028 году. За последующие три года аппарат определит толщину ледяной коры, глубину и соленость океана. После 2031 года инженеры рассчитывают продлить миссию, если огромная радиация Европы не выведет из строя электронику, а у самого спутника будет достаточно топлива для работы. В конце миссии Europa Clipper инженеры просто выведут зонд с орбиты Европы для последующего столкновения с другим спутником Юпитера — Ганимедом.

Сейчас в массе Europa Clipper зарезервировано 250 кг для микроспутников формата CubeSat. Планируется, что они будут оснащены миниатюрными ксеноновыми двигателями для того, чтобы команда миссии исследовала гипотетические гейзеры Европы, которые могут достигать высоты в несколько десятков километров. Кроме того, кубсаты можно использовать для исследования гравитационных, радиационных и магнитных полей Европы, сканирования поверхности и составления карты. Пока НАСА собирает заявки от разработчиков кубсатов, инженеры уже выбрали 10 концептов для дальнейшей проработки.

Спускаемые аппараты

В 2015 году американский конгресс принял бюджет НАСА, в который были включены разработки спускаемых роботов для изучения Европы. Пока до конца не ясно, каким образом будет оснащена эта миссия — часть команды Europa Clipper выступает за совместный запуск аппаратов, однако другие инженеры считают, что будет целесообразнее запустить робота отдельно к Европе независимо от материнской миссии.

Масса робота Bruie (от англ. Buoyant Rover for Under-ice Exploration, «Плавучий вездеход для исследований подо льдом» — «Хайтек»), который на момент написания текста совершил тестирования в Восточной Антарктиде общей продолжительностью более 42 часов, составит 230 кг, из которых 42 кг — научное оборудование. Bruie сможет пробыть на территории Европы не более 20 дней, за время которых должен совершить спуск под ледяную поверхность и изучить химическую структуру океана.

В основе Bruie лежат приборы из других миссии НАСА и Европейского космического агентства, которое стало партнером этой части миссии. В Bruie будут использоваться технологии марсохода «Розетта», посадочного модуля Phoenix и марсохода «Пастер» в составе европейско-российской миссии «Экзомарс».

В случае отдельного запуска аппарата он будет отправлен к Европе не раньше конца 2025 года с помощью РКН SLS Block 1B. При этом до Юпитера он долетит лишь в 2030 году и только через год сможет сесть на Европу, так как перед этим ему предстоит выйти на орбиту газового гиганта.

Почему Европа?

По своим размерам, уступая даже Луне, Европа является самым тяжелым спутником в Солнечной системе. Вероятно, это связано с тем, что она состоит из силикатных пород, а в ее центре находится небольшое железное ядро.

У Европы очень разреженная атмосфера, однако она практически полностью состоит из кислорода. При этом, в отличие от Земли, на Европе кислород не биологического происхождения. Он формируется под воздействием солнечной радиации на лед, при котором легкий водород улетучивается в космос, а кислород остается в атмосфере.

Существование океана было предположено после миссии «Галилео», которая показала, что у Европы есть магнитное поле, всегда направленное против юпитерианского. Следовательно, его создают электрические токи, индуцированные в недрах Европы магнитным полем Юпитера. Для создания такого поля необходимо наличие огромного слоя с хорошей проводимостью, например, глубокого океана соленой воды. Кроме того, еще одним признаком существования подледного океана является смена коры Европы на 80 градусов относительно недр, что было бы невозможно, если бы они полностью прилегали друг к другу.

Кроме того, лед поверхности Европы — молодой, такой вывод позволил сделать спектральный анализ поверхности спутника. Не замерзает океан, вероятно, благодаря приливным силам, периодические изменения которых вызывают деформацию спутника и, как следствие, нагрев его недр.

Ряд ученых предполагает , что Европа может быть пригодной для создания не только простейших форм жизни, но и более развитых. Они объясняют это наличием кислорода, возможного жидкого океана и температур, которые в глубинах океана из-за давления могут достигать пригодных для жизни показателей.

Окончательно ученые смогут прийти к выводу на счет возможной жизни на Европе только в случае успешного запуска Europa Clipper, ее сближения со спутником, а также спуска роботов для изучения поверхности луны.

Спутник Европа: интересные факты

«У какой планеты спутник Европа?» — наверняка единственный вопрос, который не задают любители космоса, ведь многих интересуют тайны, хранящиеся космическим телом. Уже несколько десятков лет проводятся исследования, и в ближайшем будущем будет реализовано немало перспективных проектов. Все, что известно сейчас, можно собрать в единый список интересных фактов о спутнике Юпитера Европе:

  • открытие Европы и других галилеевых спутников опровергло теорию о геоцентрической системе мира, предполагающую Землю в центре Вселенной, вокруг которой движутся Луна, другие планеты и звезды, включая Солнце;
  • высокая отражательная способность делает объект одним из самых ярких и блестящих в Солнечной системе;
  • планетологи оценивают возраст льда, покрывающего всю поверхность Европы, в 180 млн лет;
  • в 2018 году ученые НАСА обнаружили ледяные гейзеры, фонтанирующие теплой водой из океана и образовывающие водяной пар. Этим похож на Европу спутник Сатурна, Энцелад;
  • металлическое ядро юпитерского спутника движется медленнее коры, так как ему не дает прибавить скорости сцепление силикатными породами;
  • как упоминалось ранее, космическое тело может стать еще одним местом для проживания живых организмов, новых или уже существующих на Земле.

Изучение Европы не останавливается, и уже скоро земляне смогут больше узнать интересных фактов о спутнике Европа.

Ссылка на основную публикацию
Статьи на тему:

Adblock
detector