Почему так тяжело изучать нейтрино и что эта частица расскажет об истории Вселенной

Почему так тяжело изучать нейтрино и что эта частица расскажет об истории Вселенной

Нейтрино является одной из самых распространенных частиц во Вселенной, при этом ее невероятно сложно обнаружить. Изучать нейтрино важно, потому что они содержат в себе информацию о явлениях и процессах, которые их порождают: это значит, что с помощью частицы можно узнать о происхождении Вселенной. Рассказываем обо всех тайнах, которые хранят в себе нейтрино.

Читайте «Хайтек» в

Что такое нейтрино?

Нейтрино — это сверхлегкие частицы, образующиеся в процессе ядерных реакций. Большинство из тех, что были обнаружены на Земле, исходят от Солнца, которое превращает водород в гелий. Но в 1930-х годах было предсказано, что Солнце должно также производить нейтрино другого типа посредством реакций с участием углерода, азота и кислорода — так называемые «нейтрино CNO». И лишь почти век спустя детектор Borexino впервые обнаружил эти частицы.

До недавнего времени было вообще непонятно, есть ли у нее масса. В последние годы стало ясно, что есть, но очень маленькая. Ее точное значение неизвестно по сию пору, а имеющиеся оценки в общем сводятся к тому, что нейтрино примерно на 10 порядков легче протона. Примерно так же соотносится вес кузнечика (около 1 грамма) с водоизмещением современного атомного авианосца George Bush (около 100 тыс. тонн).

Частица не имеет или почти не имеет электрического заряда — эксперименты пока не дали однозначного ответа, а из всех фундаментальных физических взаимодействий достоверно участвует только в слабом и гравитационном.

Нейтрино подразделяются на три поколения: электронные, мюонные и тау-нейтрино. Они обычно перечисляются именно в таком порядке, и это не случайно: так отображается последовательность их открытия. Кроме этого, есть еще антинейтрино — это античастицы трех разных типов, соответствующих «обычным». Нейтрино разных поколений могут самопроизвольно превращаться друг в друга. Ученые называют это нейтринными осцилляциями, за их открытие присудили Нобелевскую премию по физике 2015 года.

Нейтрино — результат ядерных (и термоядерных, мы далее не будем выделять их отдельно) реакций. Их, неуловимых, очень много. По подсчетам физиков-теоретиков, на каждый нуклон (то есть протон или нейтрон) во Вселенной приходится около 10 9 нейтрино. Тем не менее, мы совершенно его не замечаем: частицы проходят сквозь нас.

Как ученые ищут нейтрино?

Современные детекторы регистрируют не сами нейтрино — это пока невозможно. Объектом регистрации оказываются результаты взаимодействия частицы с веществом, заполняющим детектор. Его выбирают так, чтобы с ним реагировали нейтрино определенных, интересующих разработчиков, энергий. Поскольку энергия нейтрино зависит от механизма их образования, можно считать, что детектор рассчитан на частицы определенного происхождения.

Как только стало понятно, что нейтрино хоть и сложно, но все же можно зарегистрировать, ученые начали пытаться уловить нейтрино внеземного происхождения. Самый очевидный их источник — Солнце. В нем постоянно происходят ядерные реакции, и можно подсчитать, что через каждый квадратный сантиметр земной поверхности проходит около 90 млрд солнечных нейтрино в секунду.

На тот момент самым эффективным методом ловли солнечных нейтрино был радиохимический метод. Суть его такова: солнечное нейтрино прилетает на Землю, взаимодействует с ядром; получается, скажем, ядро 37Ar и электрон (именно такая реакция была использована в эксперименте Рэймонда Дэйвиса, за который ему впоследствии дали Нобелевскую премию).

После этого, подсчитав количество атомов аргона, можно сказать, сколько нейтрино за время экспозиции взаимодействовало в объеме детектора. На практике, разумеется, все не так просто. Надо понимать, что требуется считать единичные атомы аргона в мишени весом в сотни тонн. Соотношение масс примерно такое же, как между массой муравья и массой Земли. Обнаружилось, что похищено ⅔ солнечных нейтрино (измеренный поток оказался в три раза меньше предсказанного).

Общей особенностью всех современных нейтринных телескопов являются меры, направленные на экранирование аппаратуры от всех посторонних частиц. Нейтрино, хотя их в природе очень много, засекаются детекторами очень редко. Любой посторонний шум от космических или земных частиц наверняка их заглушит.

Поэтому стандартное размещение нейтринной обсерватории — в шахте или, в некоторых случаях, под водой, чтобы вышележащая толща блокировала ненужное излучение. Эта толща тоже тщательно подбирается — горные породы, например, должны быть как можно менее радиоактивными. Граниты нам не подойдут, глины тоже. Хорошее место для детектора — шахта в толще чистого известняка.

Читать еще:  Василий Яковлевич Струве - Астрономия и Космос

Еще одно важное требование — быть как можно дальше от атомных электростанций. Работающий ядерный реактор является очень мощным источником антинейтрино, которые в данном случае излишни.

Лучшее направление для работы нейтринной обсерватории — прием частиц, пришедших снизу, сквозь нашу планету. Для нейтрино она прозрачна, для всего остального — нет.

Современные детекторы определяют нейтринное событие по «разрушительному эффекту». Когда неуловимая частица все-таки взаимодействует с веществом детектора, она вызывает разрушение первоначального атомного ядра с образованием каких-то иных частиц. Их-то затем и обнаруживают в детекторе.

Чтобы вызвать такую реакцию, нейтрино должно иметь собственную энергию не ниже определенного, нужного для данного детектора, уровня. Поэтому современная техника всегда имеет ограничение снизу — регистрирует нейтрино, имеющие энергию выше определенного уровня. В таком порядке мы их и рассмотрим.

Зачем мы вообще изучаем нейтрино?

Нейтрино рассказывают нам чрезвычайно много о том, как Вселенная создается и удерживается от распада. Нет другого способа ответить на многие вопросы.

Натаниэль Боуден, ученый из Ливерморской Национальной лаборатории имени Лоуренса

Эксперты сравнили поиск этих частиц с работой археологов, восстанавливающих доисторические артефакты с целью понять, какой жизнь была тогда. Лучшее понимание нейтрино может раскрыть тайны других элементов астрономии и физики: от темной материи до расширения Вселенной.

Эксперимент COHERENT Окриджской национальной лаборатории состоял из пяти детекторов частиц, предназначенных для непосредственного наблюдения высокоспецифического взаимодействия между нейтрино и ядрами атомов. В прошлом году эти ученые опубликовали исследование в Science о взаимодействии между двумя нейтрино, которое было выдвинуто в качестве гипотезы десятилетиями ранее, но никогда прежде не наблюдались.

Это не просто еще одна частица. Это попытка найти, причем сравнительно простым и относительно дешевым методом, — если сравнивать с Большим адронным коллайдером, например, — новую физику. Новая физика — это и понимание того, что такое темная материя: возможно, она окажется теми самыми стерильными нейтрино. И, что возможно, выход на новые технологии. Нельзя исключать, что новые нейтрино окажутся представителями неизвестного класса частиц, которые еще и взаимодействуют между собой каким-то иным способом. Если мы нападем на след этого нового взаимодействия, то не исключено, что мы научимся его использовать на практике: подобно тому, как открытие ядерного взаимодействия привело к появлению ядерных технологий.

Григорий Рубцов, заместитель директора Института ядерных исследований.

Изучение испускаемых Землей нейтрино может помочь нам хотя бы понять, сколько в земном веществе радиоактивных элементов и где они в основном находятся. По части последнего существуют разные версии, начиная от того, что уран с торием — атрибут нижней части земной коры, и кончая тем, что источники радиации в ходе формирования планеты «утонули» к ее центру, и там существует нечто вроде ядерного реактора, причем периодически действующего.

Накопившиеся продукты распада, когда их становится достаточно много, останавливают цепную реакцию. Потом в раскаленной среде они потихоньку диффундируют наверх (они легче), освобождая место для новых порций делящегося материала, после чего процесс запускается снова. Если это так, то подобная цикличность могла бы помочь в объяснении перемен магнитной полярности Земли и, надо думать, во многом другом.

Интересен также вопрос о доле ядерных реакций в общем тепловыделении Земли. Напомним, что земные недра суммарно выдают порядка 47 ТВт тепла в год, но ученые до сих пор смутно представляют себе, какая часть этой энергии приходится на радиогенное тепло, а какая — на остаточное тепло, выделившееся когда-то при гравитационной дифференциации земного вещества.

Чем это интересно для обычного человека?

Технологии, которые разрабатываются для создания современных экспериментов по физике нейтрино, широко используются в промышленности уже сейчас, так что любое вложение в эту сферу окупается. Сейчас в мире ставятся несколько экспериментов, масштаб которых сравним с масштабом Большого адронного коллайдера.

Эти эксперименты направлены исключительно на исследование свойств нейтрино. В каком из них удастся открыть новую страницу в физике, неизвестно, но открыта она будет совершенно точно.

Как мы продвинулись в изучении нейтрино?

Накануне стало известно, что Японские ученые из Университета Цукубы и Токийского университета разработали космологическую модель, которая точно отражает роль нейтрино в эволюции Вселенной.

В результате выяснилось, что в областях, где много нейтрино, обычно присутствуют массивные скопления галактик. Еще один важный вывод: нейтрино подавляет кластеризацию темной материи и галактик, а также изменяет температуру в зависимости от собственной массы.

Также стало известно, что Borexino, огромный подземный детектор частиц в Италии, уловил невиданный ранее тип нейтрино, исходящий от Солнца. Эти нейтрино подтверждают гипотезу 90-летней давности и дополняют наше представление о циклах синтеза Солнца и других звезд. В 1930-х годах было предсказано, что Солнце должно также производить нейтрино другого типа посредством реакций с участием углерода, азота и кислорода — так называемые нейтрино CNO. И лишь почти век спустя детектор Borexino впервые обнаружил эти частицы.

Читать еще:  Что такое чёрная дыра

Реакция CNO выделяет лишь крошечную часть от общего количества солнечной энергии, но у более массивных звезд она считается основной движущей силой термоядерного синтеза. Экспериментальное обнаружение нейтрино CNO означает, что ученые наконец получили связь между последними частями головоломки и могут расшифровать весь цикл солнечного термоядерного синтеза.

Подтверждение того, что CNO осуществляется в процессе термоядерной активности нашей звезды, где подобные реакции занимают не более 1%, укрепляет нашу уверенность в том, что мы точно понимаем, как работают звезды.

Франк Калаприс, главный исследователь Borexinо

Детекторы нейтрино предназначены для отслеживания тех редких случаев, когда эти «призрачные частицы» случайно сталкиваются с другими атомами. Обычно в таких устройствах используются огромные объемы детекторной жидкости или газа, которые испускают вспышку света при «ударе» нейтрино. Подобные эксперименты обычно проводятся внутри камеры глубоко под землей, вдали от помех и воздействия других космических лучей.

Команда потратила годы, регулируя температуру инструмента, чтобы замедлить движение жидкости внутри детектора, и сосредоточилась на сигналах, исходящих из центральной области контейнера. В феврале 2020 года команда наконец-то уловила искомый сигнал и потратила почти год на его расшифровку и на то, чтобы удостовериться в отсутствии ошибок.

Эти данные могут не только улучшить наше понимание цикла слияния звезд, но и помочь ученым выяснить, насколько «металлическими» являются Солнце и другие звезды.

Загадка похищенной энергии

Александр Нозик

Историю изучения нейтрино можно читать как увлекательный детектив. Эта частица не раз испытывала дедуктивные способности ученых: не каждую из загадок удавалось решить сразу, а часть не раскрыта до сих пор. Начать хотя бы с истории открытия. Радиоактивные распады разного рода начали изучать еще в конце XIX века, и неудивительно, что в 1920-х годах ученые имели в своем арсенале приборы не только для регистрации самого распада, но и для измерения энергии вылетающих частиц, пусть и не особо точного по сегодняшним меркам. С увеличением точности приборов росла и радость ученых, и недоумение, связанное в том числе с , при котором из радиоактивного ядра вылетает электрон, а само ядро изменяет свой заряд. Такой распад называют двухчастичным, поскольку в нем образуются две частицы — новое ядро и электрон. Любой старшеклассник объяснит, что можно точно определить в таком распаде энергию и импульсы осколков, используя законы сохранения и зная массы этих осколков. Другими словами, энергия, например, электрона всегда будет одной и той же в любом распаде ядра определенного элемента. На практике же наблюдалась совсем другая картина. Энергия электронов не только не была фиксированной, но и размазывалась в непрерывный спектр до самого нуля, что ставило ученых в тупик. Такое может быть только в случае, если кто-то крадет энергию из . Но ее вроде бы некому.

Со временем приборы становились все точнее, и вскоре возможность списать подобную аномалию на погрешность аппаратуры пропала. Так появилась загадка. В поисках ее разгадки ученые высказывали разнообразные, даже совершенно абсурдные по нынешним меркам предположения. Сам Нильс Бор, например, делал серьезное заявление, что законы сохранения не действуют в мире элементарных частиц. Спас положение Вольфганг Паули в 1930 году. Он не смог приехать на конференцию физиков в Тюбингене и, не имея возможности участвовать дистанционно, прислал письмо, которое попросил зачитать. Вот выдержки из него:

Вольфганг Паули

«Дорогие радиоактивные дамы и господа. Я прошу вас выслушать со вниманием в наиболее удобный момент посланца, доставившего это письмо. Он расскажет вам, что я нашел отличное средство для закона сохранения и правильной статистики. Оно заключается в возможности существования электрически нейтральных частиц… Непрерывность Β-спектра станет понятной, если предположить, что при вместе с каждым электроном испускается такой «нейтрон», причем сумма энергий «нейтрона» и электрона постоянна…»

В финале письма были следующие строки:

«Не рисковать — не победить. Тяжесть положения при рассмотрении непрерывного Β-спектра становится особенно яркой после слов проф. Дебая, сказанных мне с сожалением: «Ох, лучше не думать обо всем этом… как о новых налогах». Следовательно, необходимо серьезно обсудить каждый путь к спасению. Итак, уважаемый радиоактивный народ, подвергните это испытанию и судите».

Позже сам Паули высказывал опасения, что, хотя его идея и спасает физику микромира, новая частица так никогда и не будет открыта экспериментально. Говорят, он даже спорил со своими коллегами, что, если частица есть, обнаружить ее при их жизни не удастся. В последующие несколько лет Энрико Ферми создал теорию бета-распада с участием частицы, названной им нейтрино, которая блестящим образом согласовалась с экспериментом. После этого ни у кого не осталось сомнений в том, что гипотетическая частица существует на самом деле. В 1956 году, за два года до смерти Паули, нейтрино было экспериментально обнаружено в обратном бета-распаде группой Фредерика Райнеса и Клайда Коуэна (Райнес получил за это Нобелевскую премию).

Читать еще:  Галактики

История открытия

Одной из основных проблем в ядерной физике 20-30-х годов ХХ века была проблема бета-распада: спектр электронов, образующихся при β -распаде, измеренный английским физиком Джеймсом Чедвиком ещё в 1914 году, имеет непрерывный характер, то есть, из ядра вылетают электроны самых различных энергий.

С другой стороны, развитие квантовой механики в 1920-х годах привело к пониманию дискретности энергетических уровней в атомном ядре: это предположение было высказано австрийским физиком Лизой Мейтнер в 1922 году. То есть, спектр вылетающих при распаде ядра частиц должен быть дискретным, и показывать энергии, равные разницам энергий уровней, между которыми происходит переход при распаде. Таковым, например, является спектр альфа-частиц при альфа-распаде.

Таким образом, непрерывность спектра электронов β-распада ставила под сомнение закон сохранения энергии. Вопрос стоял настолько остро, что в 1931 году знаменитый датский физик Н. Бор на Римской конференции выступил с идеей о несохранении энергии! Однако было и другое объяснение — «потерянную» энергию уносит какая-то неизвестная и незаметная частица.

Гипотезу о существовании чрезвычайно слабо взаимодействующей с веществом частицы выдвинул 4 декабря 1930 г. Паули — не в статье, а в неформальном письме участникам физической конференции в Тюбингене:

— «Открытое письмо группе радиоактивных, собравшихся в Тюбингене», цит. по М. П. Рекало, «Нейтрино».

Впоследствии нейтроном была названа, как оказалось, другая элементарная частица, наряду с протоном входящая в состав атомных ядер. А предсказанная Паули частица в работах 1933—1934 итальянца Энрико Ферми на итальянский манер была названа «нейтрино».

На Сольвеевском конгрессе 1933 года в Брюсселе Паули выступил с рефератом о механизме β -распада с участием лёгкой нейтральной частицы со спином ½. Это выступление было фактически первой официальной публикацией, посвящённой нейтрино.

Новые типы нейтрино?

В 2011 году исследователи из проекта Oscillation Project with Emulsion-tRacking Apparature (OPERA) в Италии сотворили всемирную сенсацию. Они объявили, что обнаружили нейтрино, движущиеся быстрее скорости света. Что в корне противоречит постулатам современной физики. Несмотря на широкое освещение этих результатов в средствах массовой информации, они были встречены научным сообществом с большим скептицизмом. Менее чем через год физики поняли, что неисправная проводка имитировала полученные сверхсветовые скорости. И нейтрино вернулись в область законопослушных частиц.

Ученым, конечно, еще многое предстоит узнать об этих странных частицах. Недавно исследователи из эксперимента Mini Booster Neutrino (MiniBooNE) в Национальной ускорительной лаборатории Ферми (Fermilab) недалеко от Чикаго предоставили убедительные доказательства того, что они обнаружили новый тип нейтрино. Они назвали его «стерильным» нейтрино. Такая находка подтверждает более раннюю аномалию, наблюдавшуюся в нейтринном детекторе жидких сцинтилляторов (LSND), эксперименте в Лос-Аламосской Национальной лаборатории в Нью-Мексико. Стерильные нейтрино перевернули бы всю известную физику, потому что они не вписываются в то, что известно как стандартная модель. Она объясняет свойства почти всех известных частиц и сил, кроме гравитации.

В мире физики ничего не застыло и не стоит на месте. Иногда кажется, что со времен Эйнштейна не было придумано ничего нового. Но это не так. Наука постоянно двигается вперед. Кто знает, может быть именно нейтрино и их загадочные свойства помогут нам когда-нибудь достичь звезд…

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Интересные факты о нейтрино

  • В 2011-м году, в эксперименте нейтринных осцилляций ЦЕРНа, было обнаружено, что частицы, пролетевшие сквозь Землю из Швеции в Италию, вероятно, превысили скорость света на 0,00248 %.

27-километровый подземный тоннель, предназначенный для размещения ускорителя БАК

Это вызвало серьезный переполох в научном сообществе. Но сенсация быстро была опровергнута самим же ЦЕРНом, когда стало известно, что «плохо вставленный разъем оптического кабеля» привел к неточному подсчету времени полета.

  • Ежесекундно сквозь человеческое тело пролетает 10 14 нейтрино, и это только те, что излучаются Солнцем.
  • Как и большинство нейтринных детекторов, Super-Kamiokande располагается в цинковой шахте под землей, на глубине в 1000 метров. Герметичное помещение лаборатории представляется в виде цилиндра с диаметров 40 м. и высотой 42 м, сконструированное из нержавеющей стали и заполненное очищенной водой – 50 000 тонн. На его стенах располагается 11 тыс. фотоэлектронных умножителей– грибоподобных приборов для повышения чувствительности детектора. Система очень восприимчива к свету и обрабатывает каждый квант, проходящий сквозь нее.
  • Похожие статьи

    Понравилась запись? Расскажи о ней друзьям!

    Ссылка на основную публикацию
    Статьи на тему: