Строение Вселенной

Строение Вселенной. Теории. Интересные факты

Вселенная (лат. universum) — весь мир который нас окружает, бесконечный во времени и пространстве и бесконечно различный по формам вечно движущейся материи. В современной астрономии наблюдаемая нами Вселенная называется Метагалактикой. Ее основными объектами являются звезды. Звездные скопления образуют галактики. Название нашей галактики — Млечный путь — содержит сотни миллиардов звезд, а в нашей Вселенной насчитывается сотни миллиардов галактик.

Галактики

Что такое галактика? – Основная структурная единица во Вселенной, галактика содержит — 150 — 200 миллиардов звезд; звездные системы разного вида, которые состоят из звезд, газовых и пылевых туманностей и межзвездного рассеянного вещества.

Есть одиночные галактики, но обычно они предпочитают располагаться группами. Как правило это 50 галактик, которые занимают в диаметре 6 миллионов световых лет. Группа Млечного Пути насчитывает больше 40 галактик.

Скопления – это область с 50-1000 галактиками, которые могут достигать размеров в 2-10 мегапарсек (диаметр). Интересно заметить, что их скорости невероятно большие, а значит, должны преодолевать гравитацию. Однако они все же держатся вместе.

Обсуждения темной материи появляется на этапе рассмотрения именно галактических скоплений.

Порой группы объединяются, тем самым формируя сверхскопление. Это одни из крупнейших вселенских структур. Наибольший представитель – Великая Стена Слоуна, которая растянулась на 500 миллионов световых лет в длину, 200 миллионов световых лет в ширину и 15 миллионов световых лет в толщину.

Черные дыры

Что такое Черные дыры? – Космические объекты, существование которых предсказано теорией тяготения Эйнштейна (общая теория относительности), как результат эволюционных изменений в крупных массивных звездах на последних стадиях их жизни, завершающихся неограниченным гравитационным сжатием (гравитационный коллапс).

По мнению американского физик Никодима Поплавского, они ведут в другие вселенные. Эйнштейн считал, что упавшее в черную дыру вещество сжимается в сингулярность. Согласно уравнениям ученого, с другой стороны черной дыры находится белая дыра — объект, из которого материя и свет только исторгаются. В паре они образуют кротовую нору, и все, что попадает туда с одной стороны и выходя с другой, образует новый мир. В начале 90-х годов XX века, физик Ли Смолин предложил похожую и в чем-то более странную гипотезу: он также верил во вселенные с той стороны черной дыры, но полагал, что они подчиняются закону наподобие естественного отбора: воспроизводятся и мутируют в ходе эволюции.

Поплавский со своей теорией может прояснить некоторые «темные» места в современной физике: к примеру, откуда могла взяться космологическая сингулярность до Большого взрыва и гамма-всплески на краю нашей Вселенной, или почему Вселенная не сферическая, а, как видно, плоская. Даже скептикам не кажется, что теория Поплавского менее правдоподобна, чем догадка Эйнштейна насчет сингулярности.

Размерность Вселенной

Проблема размерности Вселенной интенсивно рассматривается уже больше 100 лет. Ряд явлений и уникальных экспериментов показывает, что видимый физический мир, может быть, является только подпространством Гиперпространства и образует в нем сложное «геометрическое образование». О том, что наша Вселенная – многомерный объект, писалось в «Тайной Доктрине» и Е. Блаватской.

Еще ученые в Древней Греции для описания физических процессов нашего мира, в частности движения небесных тел, использовали понятия взаимовложенных концентрических сфер. На базе их представлений Аристотель создал теорию так называемых гомоцентрических сфер и дал ей «физическое» обоснование. По его теории, небесные тела считаются жестко прикрепленными к комбинации скрепленных между собой жестких сфер с общим центром, при этом движение от каждой внешней сферы передается внутренним. В последствии эта теория не нашла распространения и была отброшена (удивительно, но эта теория полностью совпадает с предложенным процессом!).

Плотность материального вещества в космическом пространстве в окрестностях Солнца составляет 0,88·10-22 кг/м3. Это больше чем в тысячу миллиардов миллиардов раз меньше плотности воды. Что же может удерживать в таком практически пустом пространстве структуры звезд и галактик на четко обозначенных траекториях?

Распределение материи во Вселенной

В 1970-е годы группа советских и американских ученых под началом академика Зельдовича предприняла попытку построить объемную модель распределения материи во Вселенной. Для этой цели в компьютер были введены данные расстояний до многих тысяч галактик. Результат получился ошеломляющим – галактики, объединенные в метагалактики, располагались в пространстве как бы на гранях некой ячеистой структуры с шагом порядка 100 млн. световых лет. Внутри этих ячеек наблюдалась относительная пустота. Говоря по другому, пространственно-временной континуум оказался структурированным! Это сильно ослабило авторитет теории Большого Взрыва и сторонников фридмановской модели Вселенной.

Вероятно, кроме нашей метагалактики существует еще множество метагалактик, совокупность которых образует систему огромных размеров – так называемую терагалактику («террас» означает «чудовище»); множество терагалактик образует систему еще более колоссальных размеров и т. д.

Еще гипотезы

1908 год – ученый Шарлье (Франция) выдвинул гипотезу, по которой Вселенная представляет из себя последовательность систем все больших размеров. Звезды образуют звездные скопления, объединяющиеся в галактики. В свою очередь галактики образуют скопления галактик, составляющих метагалактику. И таким образом размеры этих огромных звездных систем должны нарастать до бесконечности. Это так называемая дискретная самоподобная космологическая парадигма, подчеркивающая иерархическую организацию систем природы от наименьших наблюдаемых элементарных частиц до наибольших видимых кластеров галактик.

Гипотезы Шарлье в то время не имела особой популярности. Это объясняется тем, что одновременно появилась общая теория относительности, которая поразила умы своей необычной идеей о конечной, но неограниченной Вселенной. Но результаты наблюдений пока не дали убедительных доказательств в пользу выводов теории относительности и конечности Вселенной. Гипотеза бесконечной Вселенной кажется в большей степени правдоподобной. В такой ситуации модель Шарлье приобретает особый интерес.

Действительно, предложенный в монографии подход о пространстве, состоящем из взаимовложенных друг в друга сфер, совпадает как с гипотезой Шарлье, так и с дискретной самоподобной космологической парадигмой. Причем, как отмечает профессор Г. Альвен, гипотеза Шарлье объясняет парадокс Ольберса, по которой, если галактики равномерно распределены во Вселенной, то общая интенсивность их излучения будет необычайно велика, чего на самом деле не наблюдается. Кроме этого, гипотеза Шарлье позволяет избежать еще одной неприятности, связанной с тем, что при однородном распределении вещества во Вселенной необычно нарастает сила тяготения, обусловленная удаленными областями пространства.

Потому, по мнению автора монографии, Вселенную необходимо рассматривать, в соответствии с гипотезой Шарлье как последовательность концентрических сфер все больших размеров. К тому же «вопрос о том, что представляет из себя Вселенная без указания размерности пространства, из которого производится наблюдение, лишен смысла».

Недавно этому появилось научное подтверждение.

Новые гипотезы строения Вселенной

Английский физик Роджер Пенроуз из Оксфорда и его коллега Ваган Гурзадян из Ереванского физического института после тщательного изучения т.н. реликтового излучения – микроволнового фона, который остался после Большого взрыва и сохраняющий информацию о зарождении Вселенной и ее развитии, обнаружили во Вселенной странные неоднородности в виде концентрических кругов.

По мнению ученых, Вселенные возникают чередой – одна за другой. И конец предыдущей становится началом последующей.

Читать еще:  Число 11 в нумерологии: его характер и влияние - Число судьбы 11 в нумерологии

«В будущем наша Вселенная возвратиться в то состояние, в котором она была в момент Большого взрыва, – говорит Пенроуз, – станет однородной. И из бесконечно большой снова превратится в бесконечно малую». Кстати, аналогичного мнения придерживаются и астрофизики Пол Стейнхардт из Принстона и Нейл Турок из Кембриджа.

В наше время появляется много новых теорий и гипотез о строении Вселенной, в частности, ученые приходят к выводу, что «наша Вселенная существует внутри Вселенной с бОльшим числом измерений пространства».

Все эти примеры убедительно показывают, что эволюция любой системы от микро- до мега размеров осуществляется развертыванием первичноцелостной монады на составляющие ее координаты материи. Указанное развертывание происходит путем последовательного усложнения системы с троичным переходом от более простой системы к более сложной с образованием трех взаимовложенных миров. Причем каждая следующая ось имеет свое пространство, в котором находится предшествующая ось со своим собственным пространством. К примеру, трехмерный объект, движущийся в пространстве оси у, в то же время совершает движение в пространстве собственной оси развития х.

Таким образом, теория связанных пространств лежит в основе строения человека, Земли и Вселенной. При этом выстраивается иерархическая структура всего пространства, состоящего из вложенных друг в друга иерархических сфер системы пространства. Отсюда становится понятной иерархическая система структур Вселенной.

Значит, в Природе существует подобие форм и свойств структур независимо от их пространственного масштаба, а Вселенная определяется как многомерная система в виде иерархии структур.

Имеет ли Вселенная границы

Отсюда также следует ответ на вопрос, есть ли у Вселенной границы. При рассмотрении развития Вселенной согласно предлагаемой теории связанных пространств ответ будет однозначный – у Вселенной, как и всего в нашем мире, есть границы. Только эти границы до такой степени велики, что человек не в состоянии охватить их своим умом. Это совпадает с мнением А. Эйнштейна: по его мнению, Вселенная представляет из себя замкнутую оболочку гиперсферы. Современная наука считает Вселенную многомерной, в которой наша «местная» трехмерная Вселенная является только одним из ее слоев, что также совпадает с теорией связанных пространств.

Эта теория дает возможность также объяснить парадокс, возникший с движением двух космических аппаратов «Пионер-10» и «Пионер-11», которые первые в истории человечества вышли за пределы Солнечной системы. По непонятной причине произошло их торможение, хотя казалось бы, они движутся в безвоздушном пространстве и торможения быть не должно. Исходя из предложенной в монографии гипотезы, выйдя за пределы Солнечной системы космические аппараты оказались в другом пространстве, в котором вектор развития направлен перпендикулярно, потому новое пространство имеет абсолютно другие характеристики по сравнению с предыдущим.

Новая научная парадигма уже возникает на основе тех знаний, которые накоплены человечеством. Многомерное строение Вселенной постепенно становится понятным и объяснимым фактором. Это дает основание утверждать, что найдены общие закономерности в иерархии систем.

Интересные факты о Вселенной

• Самым отдаленные звезды, которые нам видны, выглядят так-же, как выглядели 14 000 000 000 лет назад. Свет от этих звезд доходит до нас сквозь пространства через многие миллиарды лет, причем имеет скорость 300 000 км/сек.

• Таинственные Черные дыры – одни из самых любопытных и малоизученных объектов Вселенной. Они обладают до такой степени громадным притяжением, что выйти за пределы Черный дыры ничто не может, даже свет.

• Во Вселенной имеется гигантский пузырь, в составе которого имеется только газ. Появился он, по вселенским меркам, не так давно, только через два миллиарда лет после Большого Взрыва. Длинной пузырь – 200 миллионов космических лет, а расстояние от Земли до него – 12 миллиардов космических лет.

• Квазары – невероятно яркие объекты (намного ярче Солнца).

• В Солнечной Системе существует тело, похожее на Землю. Это спутник Сатурна, Титан. На его поверхности есть реки, вулканы, моря, а атмосфера имеет высокую плотность. Расстояние от Сатурна до его спутника приблизительно равно расстоянию от Земли до Солнца, соотношение массы тел примерно такое же. Однако разумной жизни на Титане, скорей всего не будет из-за водоемов – состоящих из метана и пропана.

• Невесомость в космосе, плохо влияет на здоровье человека. Одним из самых значительных изменений в организме человека в невесомости являются потеря кальция костями, перемещение жидкостей вверх и ухудшение работы кишечника.

Теории происхождения Вселенной

Креационизм: все создал Господь Бог

Среди всех теорий о происхождении Вселенной эта появилась самой первой. Очень хорошая и удобная версия, которая, пожалуй, будет иметь актуальность всегда. Кстати, многие ученые физики, несмотря на то что наука и религия часто представляются понятиями противоположными, верили в Бога.

Например, Альберт Эйнштейн говорил:

«Каждый серьезный естествоиспытатель должен быть каким-то образом человеком религиозным. Иначе он не способен себе представить, что те невероятно тонкие взаимозависимости, которые он наблюдает, выдуманы не им.»

Теория Большого Взрыва (модель горячей Вселенной)

Пожалуй, самая распространенная и наиболее признанная модель происхождения нашей Вселенной. Отвечает на вопрос — каким образом образовались химические элементы и почему распространённость их именно такая, какая сейчас наблюдается.

Согласно этой теории, около 14 миллиардов назад, пространства и времени не было, а вся масса вселенной была сосредоточена в крохотной точке с невероятной плотностью – в сингулярности. Однажды из-за возникшей в ней неоднородности, произошел так называемый Большой Взрыв. И с тех пор Вселенная постоянно расширяется и остывает.

Теория Большого взрыв

Первые 10 -43 секунды после Большого Взрыва называют этапом квантового хаоса. Природа мироздания на этом этапе существования не поддается описанию в рамках известной нам физики. Происходит распад непрерывного единого пространства-времени на кванты.

Спустя 10 000 лет энергия вещества постепенно превосходит энергию излучения и происходит их разделения. Вещество начинает доминировать над излучением, возникает реликтовый фон.

Теория Большого Взрыва тверже встала на ноги после открытия космологического красного смещения и реликтового излучения. Два этих явления — самые весомые доводы в пользу правильности теории.

Также разделение вещества с излучением значительно усилило изначальные неоднородности в распределении вещества, в результате чего начали образовываться галактики и сверхгалактики. Законны Вселенной пришли к тому виду, в котором мы наблюдаем их сегодня.

Модель расширяющейся Вселенной

Сейчас доподлинно известно, что Галактики и иные космические объекты удаляются друг от друга, а значит, Вселенная расширяется.

Модель расширяющейся Вселенной описывает сам факт расширения. В общем случае не рассматривается, когда и почему Вселенная начала расширяться. В основе большинства моделей лежит общая теория относительности и её геометрический взгляд на природу гравитации.

Красное смещение – это наблюдаемое для далеких источников понижение частот излучения, которое объясняется отдалением источников (галактик, квазаров) друг от друга. Данный факт свидетельствует о том, что Вселенная расширяется.

Реликтовое излучение – это как бы отголоски большого взрыва. Ранее Вселенная представляла собой горячую плазму, которая постепенно остывала. Еще с тех далеких времен во Вселенной остались так называемые блуждающие фотоны, которые образуют фоновое космическое излучение. Ранее при более высоких температурах Вселенной данное излучение было гораздо мощнее. Сейчас же его спектр соответствует спектру излучения абсолютно твердого тела с температурой всего 2,7 Кельвин.

Теория эволюции крупномасштабных структур

Как показывают данные по реликтовому фону, в момент отделения излучения от вещества Вселенная была фактически однородна, флуктуации вещества были крайне малыми, и это представляет собой значительную проблему.

Читать еще:  Расширяющаяся Вселенная - Астрономия и Космос

Вторая проблема — ячеистая структура сверхскоплений галактик и одновременно сфероподобная — у скоплений меньших размеров. Любая теория, пытающаяся объяснить происхождение крупномасштабной структуры Вселенной, в обязательном порядке должна решить эти две проблемы.

Современная теория формирования крупномасштабной структуры, как впрочем и отдельных галактик, носит названия «иерархическая теория».

Суть — вначале галактики были небольшие по размеру (примерно как Магеллановы облака ), но со временем они сливаются, образуя всё большие галактики.

В последнее время верность теории поставлена под вопрос.

Теория струн

Эта гипотеза в некоторой степени опровергает Большой взрыв в качестве начального момента возникновения элементов открытого космоса.

Согласно теории струн, Вселенная существовала всегда. Гипотеза описывает взаимодействие и структуру материи, где существует определенный набор частиц, которые делятся на кварки, бозоны и лептоны. Говоря простым языком, эти элементы являются основой мироздания, поскольку их размер настолько мал, что деление на другие составляющие стало невозможным.

Отличительной чертой теории о том, как образовалась Вселенная, становится утверждение о вышеупомянутых частицах, которые представляют собой ультрамикроскопические струны, которые постоянно колеблются. Поодиночке они не имеют материальной формы, являясь энергией, которая в совокупности создает все физические элементы космоса.

Примером в данной ситуации послужит огонь: глядя на него, он кажется материей, однако он неосязаем.

Хаотическая теория инфляции — теория Андрея Линде

Согласно данной теории существует некоторое скалярное поле, которое неоднородно во всем своем объеме. То есть в различных областях вселенной скалярное поле имеет разное значение. Тогда в областях, где поле слабое – ничего не происходит, в то время как области с сильных полем начинают расширяться (инфляция) за счет его энергии, образуя при этом новые вселенные.

Такой сценарий подразумевает существование множества миров, возникших неодновременно и имеющих свой набор элементарных частиц, а, следовательно, и законов природы.

Теория Ли Смолина

Эта теория достаточно известна и предполагает, что Большой Взрыв не является началом существования Вселенной, а – лишь фазовым переходом между двумя ее состояниями. Так как до Большого Взрыва Вселенная существовала в форме космологической сингулярности, близкой по своей природе к сингулярности черной дыры, Смолин предполагает, что Вселенная могла возникнуть из черной дыры.

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Конспект урока “Основы современной космологии”

Что же такое Вселенная? Этот вопрос волновал не одно поколение людей. По сути дела, существовавшие на каждом этапе развития человеческой цивилизации представления о строении мира можно считать космологическими теориями соответствующей эпохи.

Космология — это раздел астрономии, изучающий свойства, строение и эволюцию Вселенной в целом. Основу этой дисциплины составляют математика, физика, астрономия и философия.

А под Вселенной понимается совокупность наблюдаемых галактик всех типов и их скоплений, а также межгалактической среды.

Ранние формы космологии представляют собой религиозные мифы о сотворении и уничтожении существующего мира. А первой научно обоснованной космологической моделью Вселенной была геоцентрическая система мира Аристотеля — Птолемея. Мир считался ограниченным сферой неподвижных звёзд, за которой нет ничего.

В 1440 году в свет вышел трактат «Об учёном незнании» Николая Кузанского с новой революционной космологической моделью мира. В частности, Кузанский предполагал, что Земля — это одна из планет. Все небесные тела населены людьми, причём каждый наблюдатель во Вселенной с равным основанием может считать себя неподвижным. При этом он считал, что Вселенная безгранична, хотя и имеет конечные размеры, так как «бесконечность свойственна только одному Богу».

Ещё примерно через 200 лет появилась новая космологическая модель — гелиоцентрическая система Николая Коперника. В центр мира Коперник поместил Солнце, вокруг которого вращались планеты (в числе которых и Земля). Хотя Вселенную Коперник по-прежнему считал ограниченной сферой неподвижных звёзд.

Модификацией системы Коперника была система Томаса Диггеса, в которой звёзды располагаются не на одной сфере, а на различных расстояниях от Земли до бесконечности.

Решительный шаг от гелиоцентризма к бесконечной Вселенной, равномерно заполненной звёздами, сделал итальянский философ Джордано Бруно. В частности, он первым предположил, что звёзды — это далёкие солнца и что физические законы во всем бесконечном и безграничном пространстве одинаковы.

Возникновение современной космологии связано с развитием в начале XX века общей теории относительности Эйнштейна и физики элементарных частиц. Однако, что интересно, сам Эйнштейн считал, что Вселенная однородна, изотропна и, главное, стационарна. Даже после того, как было обнаружено, что объекты во Вселенной постоянно меняются, Эйнштейн считал, что это никак не влияет на облик Вселенной.

Эта идея была для великого учёного настолько очевидной, что в своё основное уравнение ОТО он ввёл космологическую постоянную (иногда называемую лямбда-членом). Сделано это было для того, чтобы решения уравнения допускали пространственную однородность и статичность Вселенной.

Однако в 1922 году выдающийся российский математик Александр Александрович Фридман предложил нестационарное решение уравнения Эйнштейна. Его анализ показал, что ни при каких условиях решение не может быть единственным. Это означало, что невозможно точно ответить на вопрос о том, какой формой обладает Вселенная, каков её радиус кривизны и вообще, стационарна она или нет.

Но из расчётов Фридмана вытекали три возможных следствия, которые мы попробуем объяснить, оперируя только привычными нам понятиями теории тяготения Ньютона. Итак, предположим, что распределение вещества во Вселенной действительно является однородным. Тогда галактика, расположенная на поверхности шара произвольного радиуса, будет притягиваться к его центру согласно закону всемирного тяготения:

При этом все остальные галактики, лежащие вне этого шара, не могут изменить величины этой силы, так как их действия будут равны по абсолютной величине и направлены в противоположные стороны. Из этого следует, что наша исследуемая галактика движется к центру шара с ускорением, сообщаемым силами гравитации:

Знак «минус» указывает на то, что ускорение соответствует притяжению, а не отталкиванию.

Уже из этой формулы следует, что Вселенная не может быть стационарной, поскольку в ней действуют силы тяготения.

Подтверждением нестационарной модели Вселенной стало открытие в 1929 году Эдвином Хабблом космологического закона расширения Вселенной — закона Хаббла.

После открытия закона Хаббла Эйнштейн сказал, что «введение космологической постоянной было моей величайшей ошибкой». А зря. Но об этом чуть позже.

Удаление галактик, которое происходит во все стороны от нас, не означает, что наша Галактика занимает какое-то особое положение во Вселенной. Точно такая же картина «разбегания» галактик будет наблюдаться и для любой другой галактики.

Поясним это на простом примере. Пусть мы находимся в некоторой галактике А. Проведём через эту галактику прямую. На ней окажется несколько галактик, которые удаляются от нас со скоростями, подчиняющимися закону Хаббла.

Теперь перепрыгнем из нашей галактики А в какую-нибудь другую галактику В, удаляющуюся от нас, и попробуем определить скорости всех галактик относительно неё. Для этого мы с вами должны вычесть скорость галактики В из скоростей остальных галактик.

Как видим, мы с вами получили картину, которая принципиально ничем не отличается от первоначальной. То есть скорости удаления галактик по-прежнему пропорциональны расстоянию до них.

Для определения примерного времени начала наблюдаемого расширения Вселенной можно воспользоваться постоянной Хаббла.

А пока вернёмся к работам Фридмана и Хаббла, которые показали, что Вселенная не может быть стационарной. А взаимное удаление галактик указывает на то, что в прошлом они были значительно ближе друг к другу. Более того, расчёты, проведённые на основе космологических моделей Фридмана, указывали на то, что в момент начала расширения вещество Вселенной должно было иметь бесконечно большую плотность, заключённую в бесконечно малом объёме. Но почему же Вселенная начала расширяться?

Читать еще:  Наша галактика Млечный Путь находится на пути столкновения с соседней галактикой Андромеды

Чтобы найти ответ на этот вопрос, независимо друг от друга бельгийский священник Жорж Леметр и советско-американский физик Георгий Антонович Гамов предложили новую модель горячей Вселенной. В соответствии с ней на ранних стадиях расширения Вселенная характеризовалась не только высокой плотностью вещества, но и его высокой температурой. Эта гипотеза получила название Большого взрыва.

Согласно этой теории, предполагается, что Вселенная возникла в результате взрыва из состояния сингулярности. Космологическая сингулярность — это состояние Вселенной в определённый момент времени в прошлом, продолжавшийся от 0 до 10 –43 степени секунд. В это время вещество имело планковскую энергию (10 19 ГэВ), планковский радиус (10 –35 м), планковскую температуру (10 32 К) и планковскую плотность (

10 97 г/см 3 ). Затем Вселенная начала расширяться и охлаждаться. По мере охлаждения в ней начинают образовываться протоны и нейтроны. Начиная с четвёртой минуты Вселенная остыла до такой степени, что начали образовываться стабильные ядра самых лёгких химических элементов — водорода и гелия. Спустя пять минут после начала расширения температура во Вселенной упала настолько, что термоядерные реакции прекратились. В это время вещество состояло из смеси ядер водорода (около 70 % массы) и ядер гелия (около 30 %).

Через 380 тысяч лет после Большого взрыва температура снизилась настолько, что стало возможным существование атомов водорода (до этого процессы ионизации и рекомбинации протонов с электронами находились в равновесии). Через миллион лет после начала расширения наступила эра вещества, когда из горячей водородно-гелиевой плазмы с малой примесью других ядер стало развиваться многообразие нынешнего мира.

Самым эффектным результатом теории горячей Вселенной Гамова стало предсказание космического фона излучения или реликтового излучения. Оно представляет собой фотоны, которые образовались через 380 тысяч лет после Большого взрыва, когда Вселенная стала прозрачной, а вещество в ней стало очень сильно разреженным. Поэтому образовавшиеся в это время фотоны избежали рассеяния и до сих пор достигают Земли через пространство продолжающей расширяться Вселенной. При этом Гамов в 1950 году вместе со своими сотрудниками смог оценить температуру этого остаточного излучения — всего около трёх кельвинов.

В 1964 году американским радиоастрономам Анро Пензиасу и Роберту Уилсону удалось обнаружить космический фон излучения и измерить его температуру. Она оказалась равной именно 3 К. Это было самое крупное открытие в космологии со времён открытия Хабблом общего расширения Вселенной. Таким образом, теория Гамова была полностью подтверждена.

Казалось бы, на этом всё. Теория горячей расширяющейся Вселенной, которая опирается на работы Фридмана и Гамова, стала общепризнанной. Но Вселенная ухмыльнулась над потугами людей её познать и подкинула новый вопросик: как в дальнейшем будет происходить моё расширение?

Чтобы ответить на этот вопрос, необходимо было найти зависимость скорости удаления галактики от расстояния до неё. Казалось бы, нет ничего проще, если использовать закон Хаббла. Но не всё так просто, само значение параметра Хаббла требуется сначала каким-нибудь способом установить. А для этого нужно измерить значения красного смещения для галактик, расстояния до которых уже вычислены другими методами, например с помощью фотометрического параллакса. Так, известно, что поток фотонов, приходящих от источника излучения и регистрируемых наблюдателем, обратно пропорционален квадрату расстояния до источника:

Таким образом, по известной мощности излучения (то есть светимости) наблюдаемого объекта и измерив поток света, можно вычислить, на каком расстоянии этот объект находится:

Для этого в астрономии применяются так называемые «стандартные свечи» — объекты, светимость которых заранее известна. Пока лучшим типом «стандартной свечи» для космологических наблюдений являются сверхновые звёзды типа Ia. Связано это с тем, что все вспыхивающие этого типа, находящиеся на одинаковом расстоянии, должны иметь почти одинаковую наблюдаемую яркость.

Сравнивая наблюдаемую яркость сверхновых в разных галактиках, можно определить расстояния до этих галактик.

Так вот, в конце 90-х годов ХХ в. было обнаружено, что в удалённых галактиках, расстояние до которых было определено по закону Хаббла, сверхновые имеют яркость ниже той, которая им полагается. Иными словами, расстояние до этих галактик, вычисленное по методу «стандартных свеч», оказывается больше расстояния, вычисленного на основании ранее установленного значения параметра Хаббла. Это позволило сделать вывод о том, что Вселенная не просто расширяется, она расширяется с ускорением.

Более того, учёные пришли к выводу о том, что наблюдаемое ускорение должно создавать неизвестный прежде вид материи, которая обладает свойством антигравитации. Так появился гипотетический вид энергии, названный тёмной энергией.

Открытие антитяготения, которое оказалось неожиданным для большинства людей, подтвердило предвидение Эйнштейна. Таким образом, великий и ужасный лямбда-член вернулся в уравнение общей теории относительности.

Дальнейшие наблюдательные данные показали, что тёмная энергия практические равномерно заполняет пространство Вселенной. Более того, в марте 2013 года по данным изучения реликтового излучения космической обсерваторией «Планк» было установлено, что общая масса-энергия наблюдаемой Вселенной на 68,3 % состоит из тёмной энергии и на 26,8 % — из тёмной материи.

На основании этих данных учёными была предложена новая космологическая модель нашей Вселенной, которую назвали моделью Лямбда-СиДиЭм (ΛCDM). Новая модель позволила также уточнить возраст Вселенной —13,75 ± 0,11 миллиарда лет.

Таким образом, развитие современной космологии в очередной раз показало безграничные возможности человеческого разума, способного исследовать сложнейшие процессы, которые происходят во Вселенной на протяжении миллиардов лет.

Проблемы будущего Вселенной

Из чего состоит Вселенная

Ученые не прекращают искать ответы на вопрос о будущем Мироздания. Многочисленные гипотезы дальнейшего развития макромира пророчат различный исход: от уничтожения всего современного мира до бесконечной жизни Космоса. К возможным сценариям развития Вселенной причисляют повторный Большой разрыв. В критический момент сила расширения возобладает над гравитационной, удерживающей вместе скопления галактик и звезд. При дальнейшем увеличении Вселенной прекратят существование планеты и более мелкие объекты. Наконец, за наносекунду до взрыва разрушатся атомы. По прогнозам вселенская катастрофа произойдет через 22 млрд. лет. Что произойдет после этого – сказать нереально, ведь современные законы физики не будут работать.

Торможение темпов увеличения Вселенной может спровоцировать активный процесс Большого сжатия. Это приведет к образованию одного мегаскопления звезд на месте здравствующего сегодня Космоса. В галактиках не прекратится рождение звезд, но с уменьшением границ Вселенной, показатель ее температуры будет непрерывно возрастать. В дальнейшем испарятся все планеты, а известная материя преобразуется в черные дыры. Слияние этих объектов вызовет сингулярность – появление большой черной дыры. Возможно, что далее придет время эпохи без ясного источника энергии – так называемый период «вечной тьмы». Но оптимистически настроенные ученые говорят, что после наступит время очередного Большого взрыва, подчеркивая тем самым бесконечную цикличность этих космических процессов.

По всей видимости, вопросы обсуждения зарождения Вселенной останутся открытым до конца, а именно от этого фактора зависят прогнозы эволюции Мироздания. В астрономии для многих явлений нет точных определений, а существуют только гипотезы для их объяснения. Это в очередной раз подчеркивает уникальность и сложность огромного мира Вселенной, в котором с невероятной скоростью движется и наша уютная Земля.

Похожие статьи

Понравилась запись? Расскажи о ней друзьям!

Ссылка на основную публикацию
Статьи на тему: