Четыре экзотических типа звезд, которые в будущем появятся во Вселенной

Содержание

Четыре экзотических типа звезд, которые в будущем появятся во Вселенной

Новости партнеров

Ранняя Вселенная была заполнена странными и таинственными объектами. Вскоре после Большого взрыва огромные облака вещества, возможно, сразу схлопывались в черные дыры, миновав стадию звездного коллапса. Псевдогалактики осветили море нейтрального водорода, чтобы сделать космос прозрачным, испуская фотоны там, где раньше не было ничего, кроме тьмы. И недолговечные звезды, состоящие только из водорода и гелия, вспыхивали и исчезали, как искры в ночи.

Спустя 13 с лишним миллиардов лет материя Вселенной превратилась во многие типы звезд разного размера, яркости и продолжительности жизни. Но звезды современного космоса – не единственные типы светил, которые когда-либо будут существовать. В далеком будущем, через много миллиардов или даже триллионов лет, последние известные стадии нынешних звезд превратятся в совершенно новые небесные объекты, некоторые из которых могут даже служить предвестниками тепловой смерти Вселенной.

Рассмотрим четыре звезды, которые могут возникнуть, если Вселенная просуществует достаточно долго.

Синий карлик

Красные карлики считаются наиболее распространенным типом звезд во Вселенной. Они малы по массе (от 80 масс Юпитера) и температуре по сравнению с другими светилами. Астрономы полагают, что красные карлики могут существовать триллионы лет, медленно превращая водород в гелий, это означает, что некоторые из них практически ровесники Вселенной. Звезда с массой 10 процентов от солнечной может жить до шести триллионов лет, в то время как самые маленькие звезды, такие как TRAPPIST-1, вдвое дольше. Вселенной всего около 13,8 миллиарда лет, поэтому красные карлики не прошли даже одного процента своего жизненного пути.

Солнцу, напротив, осталось всего около пяти миллиардов лет, прежде чем оно сожжет все свое водородное топливо и начнет превращать гелий в углерод. Это изменение вызовет следующую фазу его эволюции. Наша звезда сначала расширится до красного гиганта, достигнув орбиты Венеры, а затем охладится и, сбросив внешние слои, оставит после себя белого карлика – богатого электронами звездного трупа, подобных которому мы видим по всей Галактике.

Через триллионы лет красные карлики также уничтожат свои последние запасы водорода. Холодные маленькие звезды на какое-то время станут необычайно горячими, излучая синий цвет. По прогнозам, вместо того, чтобы расширяться наружу, подобно Солнцу, красный карлик поздней стадии коллапсирует. В конце концов, как только фаза синего карлика закончится, останется лишь крупица звезды в виде маленького белого карлика.

Черный карлик

Но даже белые карлики не будут жить вечно. Они медленно истощат запасы углерода и кислорода, превратившись в черных карликов, которые почти не производят собственный свет. В конце жизни черного карлика бывшая звезда испытает распад протонов и в конечном итоге испарится в экзотическую форму водорода. Так будет выглядеть настоящая смерть звезды.

По оценкам NASA, Солнце будет оставаться белым карликом около 10 миллиардов лет. Однако другие оценки предполагают, что звезды могут находиться в этой фазе в течение квадриллиона лет. В любом случае, время, необходимое для достижения этой стадии с момента рождения звезды, превышает текущий возраст Вселенной, поэтому пока не существует ни одного черного карлика.

Замерзшая звезда

Когда-нибудь, когда во Вселенной будет исчерпан материал для возобновления звездных циклов, могут появиться так называемые «замерзшие звезды», которые горят с температурой образования водяного льда (около 0 градусов Цельсия), будучи наполненными различными тяжелыми элементами из-за недостатка водорода и гелия в космосе.

Согласно исследователям, которые концептуализировали такие объекты, Фреду Адамсу и Грегори Лафлину, замерзшие звезды не будут образовываться еще триллионы триллионов лет. Некоторые из них возникнут в результате столкновений между субзвездными объектами, называемыми коричневыми карликами, которые крупнее планет, но слишком малы, чтобы воспламеняться в звезды. Замерзшие звезды, несмотря на низкую температуру, будут иметь массу, достаточную для поддержания ограниченного ядерного синтеза, но недостаточную для излучения большей части собственного света. Их атмосфера может быть загрязнена ледяными облаками, а слабое ядро излучать небольшое количество энергии.

В этом отдаленном будущем самые крупные звезды будут только в 30 раз больше Солнца по массе, по сравнению с известными сегодня звездами, которые в 300 раз превосходят его по этому параметру. Предполагается, что и в среднем звезды будут намного меньше – примерно 40 масс Юпитера. По словам Адамса и Лафлина, в этом холодном и далеком будущем, после того как Вселенная вообще перестанет образовывать звезды, оставшиеся крупные объекты будут в основном белыми и коричневыми карликами, нейтронными звездами и черными дырами.

Железная звезда

Если Вселенная продолжит постоянно расширяться, как это происходит в настоящее время, то в конечном итоге она испытает своего рода «тепловую смерть», когда сами атомы начнут распадаться. К концу этой эпохи могут образоваться поразительно необычные объекты, одним из которых может быть железная звезда.

По мере того как звезды будут непрерывно превращать легкие элементы в более тяжелые, в конечном итоге образуется необычайное количество изотопов железа – стабильного, долговечного элемента. Экзотическое квантовое туннелирование пробьет железо на субатомном уровне. Этот процесс приведет к появлению железных звезд – гигантских объектов, почти полностью состоящих из железа. Однако такой объект возможен только в том случае, если протоны не будут распадаться, что является еще одним вопросом, на который люди не успеют ответить.

Никто не знает, как долго будет существовать Вселенная, и наш вид почти наверняка не сможет засвидетельствовать последние дни космоса. Но если бы мы могли жить и наблюдать за небом еще триллионы лет, то, несомненно, стали бы очевидцами замечательных изменений.

Наименование звезд Вселенной

Древние люди не обладали нашими техническими преимуществами, поэтому в небесных объектах узнавали образы различных существ. Это были созвездия, о которых сочиняли мифы, чтобы запомнить названия. Причем практически все эти имена сохранились и используются сегодня.

Читать еще:  Как падают метеориты - Астрономия и Космос

В современном мире насчитывается 88 созвездий (среди них 12 относятся к зодиакальным). Самая яркая звезда получает обозначение «альфа», вторая – «бета», а третья – «гамма». И так продолжается до конца греческого алфавита. Есть звезды, которые отображают части тела. Например, ярчайшая звезда Ориона Бетельгейзе (Альфа Ориона) – «рука (подмышка) великана».

Красный сверхгигант Бетельгейзе

Не стоит забывать, что все это время составлялось множество каталогов, чьи обозначения используют до сих пор. Например, Каталог Генри Дрейпера предлагает спектральную классификацию и позиции для 272150 звезд. Обозначение Бетельгейзе – HD 39801.

Но звезд на небе невероятно много, поэтому для новых используют аббревиатуры, обозначающие звездный тип или каталог. К примеру, PSR J1302-6350 – пульсар (PSR), J – используется система координат «J2000», а последние две группы цифр – координаты с кодами широты и долготы.

Звезды все одинаковые? Ну, когда наблюдаешь без использования техники, то они лишь слегка отличаются по яркости. Но ведь это всего лишь огромные газовые шары, так? Не совсем. На самом деле, у звезд есть классификация, основанная на их главных характеристиках.

Среди представителей можно встретить голубых гигантов и крошечных коричневых карликов. Иногда попадаются и причудливые звезды, вроде нейтронных. Погружение во Вселенную невозможно без понимания этих вещей, поэтому давайте познакомимся со звездными типами поближе.

Типы звезд Вселенной

Это то, что мы видим до появления полноценной звезды. Протозвезда представляет собою скопление газа, рухнувшего от молекулярного облака. Эволюционная фаза занимает примерно 100000 лет. Дальше гравитация набирает силу, и заставляет образование разрушаться. Гравитация накаляет газ и вынуждает его выделять энергию.

Этот момент идет перед переходом в звезду главной последовательности. Наступает в завершении протозвезды, когда энергию дарит только разрушающая ее гравитационная сила. У таких звезд еще нет достаточного нагрева и давления, чтобы активировать процесс ядерного синтеза. На звездах типа Т Тельца можно заметить огромные пятна, вспышки рентгеновского излучения и мощные порывы ветров. Эта стадия охватывает 100000 миллионов лет.

Большая часть вселенских звезд находится в стадии главной последовательности. Можно вспомнить Солнце, Альфа Центавра А и Сирус. Они способны кардинально отличаться по масштабности, массивности и яркости, но выполняют один процесс: трансформируют водород в гелий. При этом производится огромный энергетический всплеск.

Такая звезда переживает ощущение гидростатического баланса. Гравитация заставляет объект сжиматься, но ядерный синтез выталкивает его наружу. Эти силы работают на уравновешивании, и звезде удается сохранять форму сферы. Размер зависит от массивности. Черта – 80 масс Юпитера. Это минимальная отметка, при которой возможно активировать процесс плавления. Но в теории максимальная масса – 100 солнечных.

Когда звезда полностью израсходует внутреннее топливо, то больше не может создавать внешнее давление, а значит не противодействует внутреннему. Звезда сжимается, а оболочка вокруг ядра воспламеняется, продлевая ей жизнь, но увеличивая в размере. Звезда трансформируется в красного гиганта и может быть в 100 раз крупнее, чем представитель в главной последовательности. Когда не остается водорода, начинает гореть гелий и даже более тяжелые элементы. На этот этап уходит несколько сотен миллионов лет.

Если топлива нет, то у звезды больше не хватает массы, чтобы продлить ядерный синтез. Она превращается в белого карлика. Внешнее давление не работает, и она сокращается в размерах из-за силы тяжести. Карлик продолжает сиять, потому что все еще остаются горячие температуры. Когда он остынет, то обретет фоновую температуру. На это уйдут сотни миллиардов лет, поэтому пока просто невозможно найти ни единого представителя.

Это наиболее распространенный вид. Перед нами звезда главной последовательности с низкой массой, из-за чего значительно уступает в температуре Солнцу. Но выигрывает за счет продолжительности жизни. Дело в том, что им удается расходовать топливо в медленных темпах, поэтому отличаются значительной экономией. Наблюдения говорят, что такие объекты способны просуществовать до 10 триллионов лет. Наименьшие экземпляры достигают всего 0.075 раз солнечной массы, но могут набирать и 50%.

Когда звезда в 1.35-2.1 раз больше солнечной массы, то не завершает существование в виде белого карлика, а освещает небо взрывом сверхновой. После этого остается ядро, которое и выступает нейтронной звездой. Это очень интересный объект, так как всецело представлен нейтронами. Дело в том, что мощная гравитационная сила сжимает протоны и электроны, формирующие нейтроны. Если масса звезды была еще больше, то перед нами развернется черная дыра.

Наиболее крупные звезды называют сверхгигантами. Они в десятки раз больше солнечной массы, но им не так уж и повезло: чем больше размер, тем короче жизнь. Они стремительно расходуют внутреннее топливо (несколько миллионов лет). Поэтому проживают короткую жизнь и умирают как сверхновые.

Как вы поняли, существуют различные виды звезд. Понимание этого, поможет вам разобраться в эволюционной стадии объекта и даже понять, что его ждет.

Коричневыми карликами называют объекты, которые слишком крупные для планет, но и чересчур маленькие для звезд. Их масса начинается с двойной Юпитера и может достигать 0.08 солнечной. Формируются как и обычные звезды – из коллапсирующего газового и пылевого облака. Но им не хватает температуры и давления, чтобы запустить ядерный синтез. Долгое время их считали всего лишь теоретическими объектами, пока в 1995 году не нашли первый экземпляр.

Цефеиды – звезды, пережившие эволюцию из главной последовательности к полосе неустойчивости Цефеиды. Это обычные радио-пульсирующие звезды с заметной связью между периодичностью и светимостью. За это их ценят ученые, ведь они являются превосходными помощниками в определении дистанций в пространстве.

Они также демонстрируют перемены лучевой скорости, соответствующие фотометрическим кривым. У более ярких наблюдается длительная периодичность.

Классические представители – сверхгиганты, чья масса в 2-3 раза превосходит солнечную. Они пребывают в моменте сжигания топлива на этапе главной последовательности и трансформируются в красных гигантов, пересекая линию неустойчивости цефеид.

Если говорить точнее, то понятие «двойная звезда» не отображает реальную картинку. На самом деле, перед нами звездная система, представленная двумя звездами, совершающими обороты вокруг общего центра масс. Многие совершают ошибку и принимают за двойную звезду два объекта, которые кажутся расположенными близко при наблюдении невооруженным глазом.

Ученые извлекают из этих объектов пользу, потому что они помогают вычислить массу отдельных участников. Когда они передвигаются по общей орбите, то вычисления Ньютона для гравитации позволяют с невероятной точностью рассчитать массу.

Можно выделить несколько категорий в соответствии с визуальными свойствами: затмевающие, визуально бинарные, спектроскопические бинарные и астрометрические.

Читать еще:  Лунный календарь стрижек на 29 январь 2022 года

Затмевающие – звезды, чьи орбиты создают горизонтальную линию от места наблюдения. То есть, человек видит двойное затмение на одной плоскости (Алголь).

Визуальные – две звезды, которые можно разрешить при помощи телескопа. Если одна из них светит очень ярко, то бывает сложно отделить вторую.

Как классифицируют новые звезды

Можно сказать, они имеют два вида номенклатуры, то есть названий. Поскольку до 1925 года их имена отражали буквенный индекс порядка открытия в определённом созвездии, а также название этого созвездия.

А вот с 1925 года их наименование включает в себя индекс V, порядковый номер открытия в созвездии и его название.

Правда, бывают случаи обнаружения звёздных тел, которые предположительно являются новыми. Но до тех пор, пока это не подтвердится, их обозначение содержит индекс PNV и их небесные координаты.
Проще говоря, данный класс светил называют также, как переменный тип объектов.

По данным учёных, новые звезды делят на два вида:

  • переменные взрывные;
  • классические.

Переменные взрывные новые звезды

По сути, это светила, которые вспыхивают с определённой периодичностью. То есть носят повторяющийся характер.

Во время увеличения блеска до максимума на их оптической полосе фиксируется фиолетовый цвет.

Классические новые звезды

В отличие от предыдущих, их вспышки не повторяются. А амплитуда блеска чётче и значение максимум достигается намного быстрее. Только представьте, что они способны за несколько часов увеличиться до 12 звёздной величины.

Классические разделяют по периодам между вспышками. Итак, они могут быть:

  • быстрыми,
  • медленными,
  • предельно медленными,
  • повторными новыми.

Между прочим, повторные очень интересный класс тел. Для них характерны мощные вспышки с временным промежутком до нескольких десятков лет. Причем блеск увеличивается приблизительно на 10 звёздных величин.

Новая GK Пepceя

В действительности, образование и вспышки новых звезд люди наблюдают более тысячелетия. Однако за последние сто лет их обнаруживают постоянно. Сейчас за год могут открыть около десяти подобных объектов.
Вероятно, это связано с тем, что формируется новые звезды в двойных системах, которых очень много в нашей Вселенной.

На самом деле, изучение таких светил продолжается до сих пор. Более того, существует астрономический проект «E-Nova Project». Он нацелен на исследованию того, как вспыхивают новые звезды. Помимо этого, простые любители-астрономы с удовольствием наблюдают за ними.

Актуальные прогнозы исследований экзопланет

Мощные телескопы и технологии нового поколения помогут открыть все большее количество экзопланет. Они помогут приблизить нас к поиску планет, похожих на Землю: такие вращаются относительно далеко от звезд и имеют маленькие размеры.

Космический телескоп Джеймса Уэбба

Гигантский телескоп размером с теннисный корт будет запущен в космос из Французской Гвианы в 2021 году. Телескоп будет наблюдать Вселенную в инфракрасном свете, изучать формирование планетных систем и состав атмосфер экзопланет. Ожидается, что он станет главным космическим инструментом нынешнего десятилетия.

Космическая платформа: телескоп Нэнси Роман

В середине 2020-х годов в космос запустят электростанцию телескопов, которая поможет лучше изучить экзоланеты. Окно зрения этой станции будет в 100 раз превышать окно самого мощного телескопа NASA, который сейчас занимается поиском планет. Главная цель — изучение темной материи и темной энергии, но в рамках своей программы он будет делать и фотографии экзопланет. С его помощью начнут исследовать плотные звезды Млечного Пути, а на их фоне можно поймать и новые планеты.

Коричневые карлики

Коричневые карлики, это вид звёзд, в которых потери энергии на излучение не компенсируются их ядерными реакциями.

Ранее считалось, что это гипотетические объекты, так как такие объекты, по всей видимости, должны существовать. И в 2004 году был открыт 2М1207 – коричневый карлик, в созвездии Гидры.

Коричневые карлики имеют очень и очень малые размеры, где-то в 12,5-80,3 раз больше Юпитера. В их ядрах протекают ядерные реакции с участием ядер легких элементов – дейтерия, бора, бериллия и лития. После их исчерпания термоядерная реакция прекращается, и звезда полностью потухнет, превратившись в некий планетоподобный объект.

Коричневые карлики имеют свои спектральные классы, различающиеся поверхностной температурой: L – температура от 1500 K до 2000 К; Т – 700 К-1500 К; Y – очень холодные, с температурой до 700 К.

Новый тип звезд — Астрономия и Космос

Звезды бывают самые разные: маленькие и большие, яркие и не очень, старые и молодые, горячие и «холодные», белые, голубые, желтые, красные и т. д.

Разобраться в классификации звезд позволяет диаграмма Герцшпрунга – Рассела.

Она показывает зависимость между абсолютной звездной величиной, светимостью, спектральным классом и температурой поверхности звезды. Звезды на этой диаграмме располагаются не случайно, а образуют хорошо различимые участки.

Диаграмма Герцшпрунга – Рассела

Большая часть звезд находится на так называемой главной последовательности. Существование главной последовательности связано с тем, что стадия горения водорода составляет

90% времени эволюции большинства звезд: выгорание водорода в центральных областях звезды приводит к образованию изотермического гелиевого ядра, переходу к стадии красного гиганта и уходу звезды с главной последовательности. Относительно краткая эволюция красных гигантов приводит, в зависимости от их массы, к образованию белых карликов, нейтронных звезд или черных дыр.

Находясь на различных стадиях своего эволюционного развития, звезды подразделяются на нормальные звезды, звезды карлики, звезды гиганты.

Нормальные звезды, это и есть звезды главной последовательности. К ним относится и наше Солнце. Иногда такие нормальные звезды, как Солнце, называют желтыми карликами.

Жёлтый карлик

Жёлтый карлик – тип небольших звёзд главной последовательности, имеющих массу от 0,8 до 1,2 массы Солнца и температуру поверхности 5000–6000 K.

Время жизни жёлтого карлика составляет в среднем 10 миллиардов лет.

После того, как сгорает весь запас водорода, звезда во много раз увеличивается в размере и превращается в красный гигант. Примером такого типа звёзд может служить Альдебаран.

Красный гигант выбрасывает внешние слои газа, образуя тем самым планетарные туманности, а ядро коллапсирует в маленький, плотный белый карлик.

Красный гигант

Красный гигант – это крупная звезда красноватого или оранжевого цвета. Образование таких звезд возможно как на стадии звездообразования, так и на поздних стадиях их существования.

На ранней стадии звезда излучает за счет гравитационной энергии, выделяющейся при сжатии, до того момента пока сжатие не будет остановлено начавшейся термоядерной реакцией.

На поздних стадиях эволюции звезд, после выгорания водорода в их недрах, звезды сходят с главной последовательности и перемещаются в область красных гигантов и сверхгигантов диаграммы Герцшпрунга – Рассела: этот этап длится примерно 10% от времени «активной» жизни звезд, то есть этапов их эволюции, в ходе которых в звездных недрах идут реакции нуклеосинтеза.

Читать еще:  Альтаир - звезда из созвездия Орла и ее характеристики

Звезда гигант имеет сравнительно низкую температуру поверхности, около 5000 градусов. Огромный радиус, достигающий 800 солнечных и за счет таких больших размеров огромную светимость. Максимум излучения приходится на красную и инфракрасную область спектра, потому их и называют красными гигантами.

Крупнейшие из гигантов превращаются в красных супергигантов. Звезда под названием Бетельгейзе из созвездия Орион – самый яркий пример красного супергиганта.

Звезды карлики являются противоположностью гигантов и могут быть следующие.

Белый карлик

Белый карлик – это то, что остаётся от обычной звезды с массой, не превышающей 1,4 солнечной массы, после того, как она проходит стадию красного гиганта.

Из-за отсутствия водорода термоядерная реакция в ядре таких звезд не происходит.

Белые карлики – очень плотные. По размеру они не больше Земли, но массу их можно сравнить с массой Солнца.

Это невероятно горячие звёзды, их температура достигает 100 000 градусов и более. Они сияют за счёт своей оставшейся энергии, но со временем она заканчивается, и ядро остывает, превращаясь в чёрного карлика.

Красный карлик

Красные карлики – самые распространённые объекты звёздного типа во Вселенной. Оценка их численности варьируется в диапазоне от 70 до 90% от числа всех звёзд в галактике. Они довольно сильно отличаются от других звезд.

Масса красных карликов не превышает трети солнечной массы (нижний предел массы — 0,08 солнечной, далее идут коричневые карлики), температура поверхности достигает 3500 К. Красные карлики имеют спектральный класс M или поздний K. Звезды этого типа испускают очень мало света, иногда в 10 000 раз меньше Солнца.

Учитывая их низкое излучение, ни один из красных карликов не виден с Земли невооружённым глазом. Даже ближайший к Солнцу красный карлик Проксима Центавра (самая близкая к Солнцу звезда в тройной системе) и ближайший одиночный красный карлик, звезда Барнарда, имеют видимую звёздную величину 11,09 и 9,53 соответственно. При этом невооружённым взглядом можно наблюдать звезду со звёздной величиной до 7,72.

Из-за низкой скорости сгорания водорода красные карлики имеют очень большую продолжительность жизни – от десятков миллиардов до десятков триллионов лет (красный карлик с массой в 0,1 массы Солнца будет гореть 10 триллионов лет).

В красных карликах невозможны термоядерные реакции с участием гелия, поэтому они не могут превратиться в красные гиганты. Со временем они постепенно сжимаются и всё больше нагреваются, пока не израсходуют весь запас водородного топлива.

Постепенно, согласно теоретическим представлениям, они превращаются в голубые карлики – гипотетический класс звёзд, пока ни один из красных карликов ещё не успел превратиться в голубого карлика, а затем – в белые карлики с гелиевым ядром.

Коричневый карлик

Коричневый карлик – субзвездные объекты (с массами в диапазоне примерно от 0,01 до 0,08 массы Солнца, или, соответственно, от 12,57 до 80,35 массы Юпитера и диаметром примерно равным диаметру Юпитера), в недрах которых, в отличие от звезд главной последовательности, не происходит реакции термоядерного синтеза c превращением водорода в гелий.

Минимальная температура звёзд главной последовательности составляет порядка 4000 К, температура коричневых карликов лежит в промежутке от 300 до 3000 К. Коричневые карлики на протяжении своей жизни постоянно остывают, при этом чем крупнее карлик, тем медленнее он остывает.

Субкоричневые карлики

Субкоричневые карлики или коричневые субкарлики – холодные формирования, по массе лежащие ниже предела коричневых карликов. Масса их меньше примерно одной сотой массы Солнца или, соответственно, 12,57 массы Юпитера, нижний предел не определён. Их в большей мере принято считать планетами, хотя к окончательному заключению о том, что считать планетой, а что – субкоричневым карликом научное сообщество пока не пришло.

Черный карлик

Черные карлики – остывшие и вследствие этого не излучающие в видимом диапазоне белые карлики. Представляет собой конечную стадию эволюции белых карликов. Массы черных карликов, подобно массам белых карликов, ограничиваются сверху 1,4 массами Солнца.

Двойная звезда

Двойная звезда – это две гравитационно связанные звезды, обращающиеся вокруг общего центра масс.

Иногда встречаются системы из трех и более звезд, в таком общем случае система называется кратной звездой.

В тех случаях, когда такая звездная система не слишком далеко удалена от Земли, в телескоп удается различить отдельные звезды. Если же расстояние значительное, то понять, что перед астрономами двойная звезда удается только по косвенным признакам – колебаниям блеска, вызываемым периодическими затмениями одной звезды другою и некоторым другим.

Новая звезда

Звезды, светимость которых внезапно увеличивается в 10 000 раз. Новая звезда представляет собой двойную систему, состоящую из белого карлика и звезды-компаньона, находящейся на главной последовательности. В таких системах газ со звезды постепенно перетекает на белый карлик и периодически там взрывается, вызывая вспышку светимости.

Сверхновая звезда

Сверхновая звезда – это звезда, заканчивающая свою эволюцию в катастрофическом взрывном процессе. Вспышка при этом может быть на несколько порядков больше чем в случае новой звезды. Столь мощный взрыв есть следствие процессов, протекающих в звезде на последний стадии эволюции.

Нейтронная звезда

Нейтронные звезды (НЗ) – это звездные образования с массами порядка 1,5 солнечных и размерами, заметно меньшими белых карликов, типичный радиус нейтронной звезды составляет, предположительно, порядка 10—20 километров.

Они состоят в основном из нейтральных субатомных частиц – нейтронов, плотно сжатых гравитационными силами. Плотность таких звезд чрезвычайно высока, она соизмерима, а по некоторым оценкам, может в несколько раз превышать среднюю плотность атомного ядра. Один кубический сантиметр вещества НЗ будет весить сотни миллионов тонн. Сила тяжести на поверхности нейтронной звезды примерно в 100 млрд раз выше, чем на Земле.

В нашей Галактике, по оценкам ученых, могут существовать от 100 млн до 1 млрд нейтронных звёзд, то есть где-то по одной на тысячу обычных звёзд.

Пульсары

Пульсары – космические источники электромагнитных излучений, приходящих на Землю в виде периодических всплесков (импульсов).

Согласно доминирующей астрофизической модели, пульсары представляют собой вращающиеся нейтронные звёзды с магнитным полем, которое наклонено к оси вращения. Когда Земля попадает в конус, образуемый этим излучением, то можно зафиксировать импульс излучения, повторяющийся через промежутки времени, равные периоду обращения звезды. Некоторые нейтронные звёзды совершают до 600 оборотов в секунду.

Цефеиды

Цефеиды – класс пульсирующих переменных звёзд с довольно точной зависимостью период-светимость, названный в честь звезды Дельта Цефея. Одной из наиболее известных цефеид является Полярная звезда.

Приведенный перечень основных видов (типов) звезд с их краткой характеристикой, разумеется, не исчерпывает всего возможного многообразия звезд во Вселенной.

ЕЩЁ МАТЕРИАЛЫ ПО ТЕМЕ:

  • Пред
  • След

1″ :pagination=»pagination» :callback=»loadData» :options=»paginationOptions»>

Ссылка на основную публикацию
Статьи на тему:

Adblock
detector