Космическая энергия – чудодейственная сила Вселенной

Космическая энергия – чудодейственная сила Вселенной

Космическая энергия – это один из самых загадочных, но в то же время необычайно увлекательных разделов об энергии в целом. Она считается универсальной, способной поставить человека на истинный путь и помочь ему раскрыться в этой жизни.

О космической энергии говорили еще древние восточные мудрецы. Согласно их мнению, эта энергия позволяет происходить всем жизненно важным процессам в нашем организме. Буддисты, например, называли энергию космоса «Ом». Она открывает чакры (энергетические центры в человеческом организме), приводит их в определенное состояние. А благодаря этому уже и воспринимается необходимая жизненная энергия.

Космическая энергия появляется из космоса, то есть участков Вселенной за пределами ее небесных тел. Ей пропитано абсолютно все в этом мире: это и воздух, и солнечный свет, и вода, и земля. Также ее иногда трактуют как Божественную энергию. Ведь по представлениям многих религий, мир создан Творцом, Создателем.

Человек и космическая энергия всегда находятся вместе. Мы, сами того не осознавая, пользуемся этой энергией. Она идет на все, абсолютно все процессы: дыхание, сердцебиение, мышление, переваривание пищи, у женщин – на зачатие и рождение ребенка, на чувства и эмоции. Продолжать можно бесконечно. Но важно понять, что космическая энергия человека– это нечто глобальное, масштабное. Мы не видим ее, но живем только благодаря ей. Человек, преобразуя и перерабатывая энергию космоса, испытывает любовь, счастье и другие положительные эмоции.

Нарушения в организме, в его процессах, которые выражаются развитием заболеваний – это проблемы не только на уровне физиологии и анатомии. Большую роль здесь играет и дефицит космической энергии.

Технологии применяющиеся в космической энергетике

1. Беспроводная передача энергии на Землю

Беспроводная передача электроэнергии была предложена на ранней стадии в качестве средства для передачи энергии от космической или Лунной станции к Земле. Энергия может быть передана с помощью лазерного излучения или СВЧ на различных частотах в зависимости от конструкции системы. Какой выбор был сделан, чтобы передача излучения была не ионизирующей, во избежание возможных нарушений экологии или биологической системы региона получения энергии? Верхний предел для частоты излучения установлен таким, чтобы энергия на один фотон не вызывала ионизацию организмов при прохождении через них. Ионизация биологических материалов начинается только с ультрафиолетового излучения и, как следствие, проявляется при более высоких частотах, поэтому большое количество радиочастот будет доступно для передачи энергии.

Читать еще:  Мужчина-Коза (Овца) - женщина-Крыса

2. Лазеры

Исследователи НАСА работали в 1980-х годах с возможностью использования лазеров для излучения энергии между двумя точками в пространстве. [12] В перспективе эта технология станет альтернативным способом передачи энергии в космической энергетике. В 1991 году начался проект SELENE, который предполагал создание лазеров для космической энергетики, в том числе и для изучение энергии лазерером на лунные базы. [12] В 1988 Грант Логан предложили использовать лазер размещенный на Земле, чтобы обеспечить энергией космические станции, предположительно это можно было осуществить в 1989. [12] Предлагалось использование солнечных элементов из алмаза при температуре 300 °C для преобразования ультрафиолетового лазерного излучения. Проект SELENE продолжал работать над этой концепцией, пока не был официально закрыт в 1993 после двух лет исследований, так и не осуществив тестирования технологии на большие расстояния. Причина закрытия: высокая стоимость осуществления. [12]

3. Преобразование солнечной энергии в электрическую

В космической энергетике (в существующих станциях и при разработках космических электростанций) единственный способ эффективного получения энергии это использование фотоэлементов. Фотоэлемент — электронный прибор, который преобразует энергию фотонов в электрическую энергию. Первый фотоэлемент, основанный на внешнем фотоэффекте, создал Александр Столетов в конце XIX века. Наиболее эффективными, с энергетической точки зрения, устройствами для превращения солнечной энергии в электрическую являются полупроводниковые фотоэлектрические преобразователи (ФЭП), поскольку это прямой, одноступенчатый переход энергии. КПД производимых в промышленных масштабах фотоэлементов в среднем составляет 16 %, у лучших образцов до 25 %. [13] В лабораторных условиях уже достигнут КПД 43 % [14] .

4. Получение энергии от СВЧ волн испускаемых спутником

Так же важно почерпнуть способы получения энергии. Один из них это получение энергии с помощью ректенн. Ректенна (выпрямляющая антенна) — устройство, представляющее собой нелинейную антенну, предназначенную для преобразования энергии поля падающей на неё волны в энергию постоянного тока. Простейшим вариантом конструкции может быть полуволновый вибратор, между плечами которого устанавливается устройство с односторонней проводимостью (например диод). В таком варианте конструкции антенна совмещается с детектором, на выходе которого, при наличии падающей волны, появляется ЭДС. Для повышения усиления такие устройства могут быть объединены в многоэлементные решётки.

Читать еще:  Физическая природа комет - Астрономия и Космос

материал из Википедии — Свободной энциклопедии

Путь тока на спутнике

В этот момент часть энергии пойдет на подзарядку батарей, чтобы они могли функционировать в пик использования и во время затмений. Оставшаяся часть распределяется по кабелям между всеми подсистемами и полезными нагрузками, которым она необходима. Размер кабелей очень важен, поскольку поперечное сечение обратно пропорционально сопротивлению, а длина прямо пропорциональна: короткий и толстый кабель очень эффективен с электротермической точки зрения, но громоздок и тяжел. На входе каждой нагрузки может быть установлен инвертор для выравнивания требований по току и напряжению. Уровень напряжения и тока также может быть установлен перед всеми нагрузками, таким образом, определяя весь корпус спутника как «регулируемый».

Инженер по разработке электронных устройств также должен защищать их от сбоев и избыточной мощности. Для этого используются элементы, не отличающиеся от бытовых и промышленных сетей, такие как предохранители, разъединители и автоматические выключатели. Если эти элементы обнаруживают напряжение, ток или мощность, выходящие за пределы диапазона, они прерывают поток тока. Наконец, для электрозащиты электронных устройств необходимо также учитывать плазму, присутствующую во внешней пространственной среде.

Внутреннее устройство космического аппарата ЕКА «Марс Экспресс».

Система добычи солнечной энергии?

Геосинхронная, она же геостационарная, (ГСО) орбита, средняя околоземная (СОО) и низкая околоземная орбита (НОО) — вот варианты к рассмотрению. Наиболее перспективной является ГСО из-за упрощенной геометрии и выравнивания антенны по отношению к ректенне, масштабируемости и почти непрерывной передачи энергии. Основная проблема ГСО — большое количество радиационного излучения. Общие космические опасности, такие как микрометеориты или солнечные вспышки, также представляют угрозу.

Спутниковая архитектура

Создать лунные фабрики с большим количеством перевозок или же разработать астероиды для сборки или самосборки спутников SBSP — в любом случае, создание автономных космических фабрик будет сложной задачей. Любое строительство в космосе потребует использования местных и бесплатных материалов (то есть лунных), при этом накладывает определенные ограничения на сложность конструкций, если сравнивать с теми, что можно построить на Земле.

Одна интересная установка, которую мы сейчас строим на Земле, это модульная солнечная батарея разработки Калтеха и Northrop Grumann. Посмотрите на нее на видео ниже.

Другая интересная концепция от частной компании Solaren. В будущем она планирует провести эксперимент со строительством солнечной электростанции SBSP мощностью 250 МВт на геостационарной орбите. В 2009 году Solaren заключила соглашение с крупнейшей энергетической компанией Калифорнии PG&E на обеспечение ее космической солнечной энергией.

Читать еще:  Гороскоп на декабрь 2020 года: общие тенденции месяца

Даже NASA с концепцией произвольно большой фазированной решетки (разработанной в 2012 году) привлекла к себе недавнее внимание от Джона С. Манкинса, одного из ведущих экспертов SBSP в мире.

Как собирать энергию солнца в космосе?

Две основные концепции, связанные со сбором энергии, это использование фотогальванических элементов (солнечных батарей) или солнечного тепла. Можно улавливать солнечное тепло (а значит и энергию), используя зеркала для концентрации света и нагрева жидкости. Пар, в свою очередь, будет вращать турбину и вырабатывать электричество. Эта концепция обладает определенным весовым преимуществом по сравнению с солнечными панелями, поскольку снижает общую массу на ватт. Однако в большинстве концепций предполагается использовать сверлегкие и высокоэффективные фотоэлектрические элементы.

Как передавать энергию солнца из космоса?

Микроволновая передача энергии — типичный выбор в конструкциях SBSP из-за общей эффективности, но использование передачи энергии по лазерному лучу — еще одна интересная опция из-за сниженного веса и стоимости. Тем не менее, при мысли о мощном лазерном луче возникает опасение, что его можно превратить в космическое оружие (луч смерти). Однако протоколы безопасности могли бы с легкостью устранить эту угрозу. Конструкции можно создавать с учетом всех требований к безопасным уровням микроволновой энергии. Не будет никакой угрозы для жителей городов и живых существ на пути лучей к земле. Простая обратная связь между антенной и ректенной позволила бы вырубить передачу, если она отклонится от курса.

Теперь, когда мы лучше поняли, что такое SBSP, давайте погрузимся в ее наибольшие ограничения.

Выводы

Нет никаких сомнений в том, что в ближайшие десятилетия энергоснабжение должно быть резко увеличено. Кроме того, представляется почти несомненным, что произойдет переход к возобновляемым источникам энергии и что перспективы солнечной энергетики огромны.

Утверждается, что для того, чтобы энергетическая система мира работала на благо всех своих народов и была достаточно устойчивой, необходимо иметь несколько вариантов развития в стремлении к расширению поставок.

Наконец, следует подчеркнуть, что если мы не сумеем разработать устойчивые и чистые источники энергии и попытаемся прихрамывать, экстраполируя существующую практику, то результатом этого, скорее всего, будет срыв развития экономических возможностей для многих людей Земли и, почти наверняка, неблагоприятные изменения в окружающей среде планеты.

Ссылка на основную публикацию
Статьи на тему:

Adblock
detector