Гравитационное линзирование

В зависимости от местонахождения человека относительно массивного тела, которое находится перед фоновым объектом и самим объектом, он может увидеть всевозможные искаженные изображения: кольца (как на фото ниже), арки или множество изображений одного и того же объекта.

В некоторых случаях через линзу объекты отображаются ярче, чем они есть на самом деле. А происходит это потому, что расходящийся от фонового объекта свет фокусируется объектом-линзой и попадает в прямую зону нашей видимости. Так гравитационные линзы иногда позволяют нам увидеть объекты, не обладающие ярким свечением, которые мы никогда бы не заметили.

На изображении ниже представлено гравитационное линзирование далеких фоновых галактик, расположенных за крупным скоплением галактик Абель 2218. Сами фоновые галактики располагается в 2 млрд световых лет от нашей планеты.

На фото ниже изображен еще один пример гравитационного линзирования, снятый при помощи телескопа «Hubble». Здесь мы видим несколько изображений квазара и еще одной фоновой галактики, сформированных благодаря расположенному перед ними скоплению галактик.

Каждое изображение одного и того же объекта выглядит немного по-разному, т.к. свет от каждого фрагмента фонового объекта проходит свой, немного отличающийся от других, путь по искривленному пространству. Астрономы определяют, принадлежат ли многочисленные изображения одному и тому же объекту, по спектру электромагнитного излучения, который, подобно отпечаткам пальцев, у каждого объекта свой.

Механизм линзирования

Схема гравитационного линзированния

По логике, свет, исходящий от дальнего квазара (одного из наиболее ярких объектов во Вселенной) или галактики в направлении Земли, должен попадать на Землю под прямым углом. Однако в некоторых случаях на пути этого света встречается другая галактика или сверхмассивная звезда, гравитационное поле, которое притягивает к себе электромагнитное излучение, направленное отдаленным объектом. Вследствие этого возникает эффект гравитационного линзирования, которому и посвящена эта статья.

Читать еще:  Европа, спутник Юпитера, может светиться в темноте

Получается, что свет отдаленного объекта, попадая на галактику, находящуюся между ним и наблюдателем, искажает истинную форму источника, который послал его на Землю. Точно так же делает обычная линза. Свет, попадая на нее, искажается. Если посмотреть через нее на объект, пославший свет, мы увидим, что он стал намного крупнее.

Форма, которую гравитационное линзирование придает отдаленному источнику света, может отличаться, в зависимости от того, через какой объект в космическом пространстве проходят его лучи. Известные примеры искажения формы источника света мы приведем в следующем пункте.

Межгалактические гравитационные линзы.

В 1937 астроном Ф.Цвикки теоретически пришел к выводу, что эффект гравитационной фокусировки света можно наблюдать в том случае, если линзой является галактика, поскольку ее гравитационное поле очень велико, а средняя поверхностная яркость довольно мала и поэтому не должна сильно мешать наблюдению.

В 1979 английские астрономы Д.Волш и др. впервые обнаружили двойной квазар (QSO 0957+16 A,B) с угловым расстоянием между компонентами A и B около 6І. Красное смещение линий в спектрах обоих компонентов оказалось одинаковым. А когда выяснилось, что оба квазара изменяют свой блеск синхронно, астрономы поняли, что в действительности это два изображения одного квазара, обязанные эффекту гравитационной линзы. Вскоре нашли и саму линзу – далекую галактику, лежащую между Землей и квазаром. Так впервые был обнаружен эффект гравитационного линзирования. Предсказание Цвикки подтвердилось.

К началу 21 в. было найдено уже несколько десятков гравитационных линз. Форма даваемого ими изображения зависит от того, насколько симметрично распределена масса в объекте-линзе и насколько точно на одной прямой располагаются Земля, линза и наблюдаемый сквозь нее светящийся объект. В идеальном случае его изображение должно иметь форму кольце вокруг центра линзы; такое изображение называют «кольцом Эйнштейна» или «кольцом Хвольсона-Эйнштейна». Некоторые из обнаруженных астрономами изображений действительно имеют форму ровного или разорванного кольца, которое возникает при смещении объекта наблюдения относительно линии «Земля – линза».

Читать еще:  Проработка Меркурия в натальной карте

Для астрономов изучение эффекта гравитационного линзирования важно потому, что оно позволяет выявить массу в любой ее форме – как видимой, так и невидимой. Известно, что многие галактики окружены протяженными коронами из невидимого вещества неизвестного типа. В крупных скоплениях галактик также замечено присутствие «скрытой массы», природа которой неизвестна. Исследуя изображения далеких квазаров, возникшие в результате эффекта гравитационного линзирования, можно весьма детально восстановить распределение темного вещества в коронах галактик и между галактиками.

Переменность блеска, присущая многим квазарам, позволяет с помощью эффекта гравитационной линзы определять постоянную Хаббла, указывающую скорость расширения Вселенной. Для этого измеряют запаздывание во времени, с которым меняют свой блеск разные изображения одного квазара, созданные линзой. Это дает истинную разницу длины световых путей у разных изображений. А относительную разницу дает расчет геометрии лучей по взаимному положению изображений. Вместе это позволяет вычислить истинное расстояние как до линзы, так и до квазара и, следовательно, определить постоянную Хаббла (поскольку скорости объектов легко измеряются по красному смещению линий в их спектрах).

Чем оно полезно для нас

Гравитационное линзирование — это непросто интересный эффект. Учёные применяют его в практических целях, кроме того, что оно помогло подтвердить общую теорию относительности. Линзирования послужило весомым аргументом в пользу существовании тёмной материи и помогает оценить её количество и распределение во вселенной.

А также гравитационное линзирование помогает заглянуть глубже в космос. Древнейшие известные галактики, которым всего несколько сот миллионов лет после большого взрыва были открыты именно при помощи гравитационного линзирования. А ещё оно увеличивает объекты, которые находятся ближе. А один из способов обнаружения экзопланет — это гравитационная микролинзирование, когда компактные звёзды действуя как слабые линзы, изгибают свет, позволяя зафиксировать более тусклые объекты, которые не видны в обычных условиях. Это, безусловно, далеко не всё и каждый из перечисленных примеров имеет множество нюансов и заслуживает отдельной статьи.

Читать еще:  Солнце и его аспекты

Надеюсь, данная статья была полезна для вас, и вы полностью разобрались в этом вопросе. Будут вопросы, пишите в комментариях, всегда рад помочь.

Ссылка на основную публикацию
Статьи на тему:

Adblock
detector