Атмосфера Солнца и солнечная активность

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Конспект урока “Атмосфера Солнца и солнечная активность”

Солнечная атмосфера состоит из нескольких слоёв: фотосферы, хромосферы и короны.

Фотосфера — это самый нижний слой солнечной атмосферы. Её толщина не превышает и 300 километров.

Температура фотосферы по мере приближения к её внешнему краю уменьшается с 6600 К до 4400 К. При таких температурах раскалённый газ излучает энергию преимущественно в оптическом диапазоне волн. Именно этот нижний слой атмосферы, видимый как желтовато-яркий диск, зрительно воспринимается нами как Солнце.

При близком рассмотрении фотосферы можно заметить, что её поверхность состоит как бы из отдельных зёрен — гранул. Это огромные пузыри плазмы, диаметр которых может достигать 700—1000 километров.

Существует одна такая гранула недолго — в среднем 5—10 минут. Затем на её месте появляется новая гранула, которая будет отличаться от прежней по форме и размерам. Процесс постоянного возникновения и исчезновения гранул в фотосфере называется грануляцией.

Наиболее приметными и самыми известными объектами фотосферы Солнца являются солнечные пятна. Их диаметр может достигать 200 000 километров, что существенно больше диаметра нашей планеты. Но есть и маленькие пятна, которые принято называть порами.

Интересно, что первые сообщения о пятнах на Солнце относятся к 800 году до нашей эры. А первые зарисовки солнечных пятен найдены в хронике Иоанна Вустерского 1128 года.

Солнечные пятна — это области «холодного» газа. Их температура примерно на 2000—2500 о С меньше, чем температура окружающей фотосферы. Поэтому на общем фоне поверхности Солнца они выглядят темнее.

Наблюдение за солнечными пятнами в начале XVII века показали, что их положение на Солнце постоянно меняется. Так было установлено, что наша звезда вращается вокруг своей оси. Причём её вращение совпадает с направлением движения планет. Однако период вращения частей Солнца неодинаков. Так на экваторе время полного оборота вокруг оси составляет 25,05 дней. У полюсов же сидерический период увеличивается до 34,3 дня.

Солнечные пятна — это не статичные объекты. Сначала они наблюдаются как маленькие тёмные участки, диаметр которых не превышает 3000 километров. Большинство таких участков в скором времени исчезает. Однако некоторые из них могут увеличиваться в несколько десятков раз, сливаться в большие группы, менять форму и размеры на протяжении нескольких оборотов Солнца.

Возникновение тёмных пятен на Солнце учёные связывают с колебаниями его магнитного поля. Так, в обычных условиях его индукция лишь в 2 раза превышает индукцию магнитного поля Земли. Но иногда в небольшой области возникают концентрированные магнитные поля, индукция которых может достигать 0,5 Тл. Такие мощные поля не дают горячей плазме подняться к поверхности. В результате чего вместо светлых гранул образуется тёмное пятно.

Несмотря на то, что наблюдение за Солнечными пятнами идёт уже не одно столетие, учёные до сих пор не знают механизма и частоту их формирования. 17 января 2017 года стало известно, что учёным Европейской южной обсерватории с помощью самого мощного микроволнового телескопа на Земле «АЛМА» удалось заглянуть «внутрь» солнечного пятна и сделать его снимки на волне 1,25 мм. Они надеются, что в будущем это поможет разгадать тайну этих магнитных структур.

Вместе с тем вблизи пятен, где магнитное поле слабее, конвективные движения усиливаются. И тогда в этих местах появляются хорошо заметные яркие образования — факелы. Факелы имеют сложную волокнистую структуру, а их температура на несколько сотен градусов превышает температуру фотосферы.

Во время полного солнечного затмения вокруг диска Луны бывает видна тонкая полоска красновато-фиолетового или розового цвета. Это хромосфера Солнца.

Её толщина составляет порядка 10 000 километров. А температура вещества в ней увеличивается с высотой от 4000 К до 20 000 К. Несмотря на такую высокую температуру, яркость хромосферы невелика из-за малой плотности вещества в ней.

Основным элементом структуры хромосферы Солнца являются спикулы. Они представляют собой достаточно тонкие, в масштабах Солнца, столбики светящейся плазмы. Одна такая спикула в среднем живёт около 5—10 минут. А её максимальная длина может достигать 20 000 километров. Из-за этого в конце XIX века итальянский астроном Анджело Секки, наблюдая хромосферу в телескоп, сравнил её с горящими прериями.

Читать еще:  Планета Венера - вторая от Солнца

Самая разреженная и самая горячая оболочка атмосферы Солнца — это солнечная корона. Её толщина составляет несколько радиусов Солнца. А температура плазмы в ней достигает 2 000 000 К.

Корона в основном состоит из протуберанцев и солнечных извержений. Протуберанцы наблюдаются на самом краю солнечного диска. Они похожи на гигантские арки, которые опираются на хромосферу Солнца.

Как правило, в большинстве протуберанцев вещество движется медленно, а время их существования может достигать нескольких месяцев. Но иногда потоки вещества в них начинают довольно быстро двигаться. Говорят, что протуберанец стал активным. Активный протуберанец может жить от нескольких десятков минут до нескольких суток. Затем он либо исчезает, либо превращается в эруптивный протуберанец. Они по внешнему виду напоминают гигантские фонтаны, которые в некоторых случаях бьют на высоту до 2 000 000 километров. Скорость вещества в таких образованиях достигает нескольких сотен километров в секунду.

Детальное изучение данного явления показало, что происходит оно в основном во время вспышек. Вспышки — это самые мощные проявления солнечной активности, во время которых иногда выделяется энергия, эквивалентная взрыву примерно 160 миллиардов мегатонных атомных бомб (6 ∙ 10 25 Дж). Для сравнения: это объём мирового потребления электроэнергии за миллион лет.

Облака плазмы, обусловленные солнечными вспышками и корональными выбросами, достигают Земли примерно через двое-трое суток. Они приводят к возникновению геомагнитных бурь на Земле, которые определённым образом влияют на технику и биологические объекты (в том числе и человека).

Число пятен и протуберанцев, частота и мощность вспышек на Солнце меняются с определённой, хотя и не очень строгой периодичностью. Эти периодические изменения солнечной активности называют солнечной цикличностью.

Наиболее известным и лучше всего изученным является солнечный цикл Швабе, длительностью около 11 лет (хотя фактически, колебания циклов происходит в пределах от 7,5 до 16 лет).

Спустя два цикла Швабе (то есть спустя 22 года) магнитное поле Солнца возвращается в своё исходное состояние. Этот цикл получил название цикла Хейла в честь американского астронома Джорджа Эллери Хейла.

Из внешней части солнечной короны истекает солнечный ветер. Он представляет собой непрерывный расширяющийся поток разреженной плазмы, радиально исходящий от Солнца вдоль линий напряжённости магнитного поля и заполняющий собой межпланетное пространство.

Вблизи нашей планеты его скорость составляет порядка 450 км/с, и она увеличивается по мере удаления от Солнца. А плотность солнечного ветра вблизи Земли составляет всего несколько частиц в кубическом сантиметре.

Поток солнечной плазмы не может преодолеть противодействие магнитного поля Земли и обтекает его. При этом образуется полость каплеобразной формы — магнитосфера. Как мы уже знаем, она имеет сложную форму. Со стороны Солнца граница магнитосферы сжата давлением солнечного ветра. С ночной же стороны она вытягивается длинным цилиндрическим хвостом на значительное расстояние, и где заканчивается — неизвестно (хотя некоторые учёные считают, что длина магнитного хвоста Земли составляет порядка 6000 её радиусов).

Небольшая часть захваченных геомагнитным полем заряженных частиц образует вокруг нашей планеты радиационный пояс. Здесь движутся протоны, ионы и электроны, обладающие самой высокой энергией. Эти частицы, попадая из в верхние слои атмосферы в районе полюсов, заставляют светиться её основные составляющие — азот и кислород, вызывая полярные сияния.

В настоящее время для изучения Солнца, помимо земных солнечных телескопов, активно используются космические аппараты. Так, например, 26 октября 2006 года для изучения солнечной активности НАСА вывела на гелиоцентрическую орбиту два одинаковых космических аппарата «СТЕРЕО». Они находятся в разных точках орбиты Земли и позволяют изучать магнитные облака, летящие к Земле, «со стороны».

А 1 февраля 2010 года была запущена космическая обсерватория солнечной динамики. На её борту находится аппаратура, способная получать 12 различных видов изображений Солнца.

А разрешение снимков таково, что учёные могут наблюдать на поверхности Солнца детали с угловым размером 0,6 угловой секунды. В период с 2010 по 2015 годы космической обсерваторией было собрано около 2600 терабайт данных, в том числе более 200 млн фотографий поверхности Солнца.

Читать еще:  Экзопланеты - планеты других звёзд

И последнее. Знаете ли вы, что Солнце светит почти белым светом? Но из-за рассеяния и поглощения коротковолновой части спектра атмосферой Земли прямой свет Солнца у поверхности нашей планеты приобретает желтоватый оттенок.

Атмосфера Солнца

Атмосферой Солнца называют три внешних слоя Солнца, расположенные выше конвективной зоны, и состоящие (по числу атомов) в основном из водорода, 10% гелия, 1/1000 углерода, азота и кислорода и 1/10 000 металлов вместе со всеми остальными химическими элементами.
Атмосферу Солнца принято разделять на фотосферу, хромосферу и корону, которая переходит в солнечный ветер.

Фотосфера

Фотосфера (перевод с греческого “сфера света”) – слой атмосферы звезды,кажущаяся поверхность Солнца, В фотосфере формируется доходящий до нас непрерывный спектр оптического излучения звезд.
Толщина фотосферы Солнца – 300-400 км. Для Солнца температура в фотосфере уменьшается с высотой от 8000-10000 o К до минимальной на Солнце температуры около 4300 o К.
. Плотность фотосферы составляет от 10 -8 до 10 -9 г/смЗ (концентрация частиц от 10 15 до 10 16 1/см3), давление около 0.1 атм.
При таких условиях все атомы с небольшими потенциалами ионизации (в несколько вольт, например Na, K, Ca) оказываются ионизованными. Остальные элементы, в том числе водород, энергия ионизации которого 13.6 эВ, остаются преимущественно в нейтральном состоянии. Фотосфера – единственный на Солнце слой, где водород почти нейтрален.
Поверхность Фотосферы Солнца покрыта гранулами. Размер гранул от 200 до 2000 км, продолжительность их существования от 1 до 10 мин. Гранулы являются верхушками конвективных ячеек, расположенных в конвективной зоне.

Фотография солнечного пятна. По переферии – сетка гранул

Спектральные линии в гранулах и промежутках между ними смещены соответственно в синюю и красную стороны. Это означает, что в средней части гранул подфотосферное солнечное вещество поднимается на поверхность, а на краях гранул стекает вниз. Скорость этих движений составляет 1 – 2 км/с. Поэтому температура в центре гранул выше, чем на периферии. “Глубина” гранул, по-видимому, достигает нескольких сотен, а то и тысячи километров. Грануляция фотосферы практически не зависит от гелиоцентрической широты и фазы цикла СА.

Хромосфера

Хромосфера обнаруживается при полном солнечном затмении как тонкий окрашенный (розоватый) ободок вокруг Солнца. Отсюда и ее название.

Ее толщина около 15*10 3 км. Концентрация частиц в хромосфере ниже, чем в фотосфере, и уменьшается с высотой от 10 14 до 10 10 1/см3. Температура в хромосфере растет с высотой неравномерно: в нижней части – медленно,4500-4800 о К, а в средней и верхней частях – быстро, достигая на границе с короной в переходном слое значений 10 6 о К . В хромосфере по мере продвижения вверх последовательно ионизуются водород, гелий и др. химические элементы. До высоты 1500 км лежит сравнительно плотная нижняя хромосфера, а выше простираются средний (1500-4000 км) и верхний слои, отличающиеся очень неоднородной структурой.
Наиболее мелкие структурные образования в хромосфере называются спикулами. Они имеют продолговатую форму, причем вытянуты преимущественно в радиальном направлении. Длина их составляет несколько тысяч километров, а толщина – около одной тысячи километров. Со скоростями в несколько десятков километров в секунду спикулы поднимаются из хромосферы в корону и растворяются в ней. Таким образом, через спикулы происходит обмен веществом между хромосферой и вышележащей короной. Спикулы, в свою очередь, образуют более крупную структуру, называемую хромосферной сеткой. Она состоит из отдельных ячеек размером (30 -60 )*10 3 км.

Часто наблюдается фибрильная структура хромосферы, отражающая характер магнитных полей, вынесенных конвекцией из-под фотосферы в хромосферу, т.е. фибриллы – это петли магнитного поля на поверхности Солнца. Интенсивное появление фибрилл сопутствует рождению новой активной области на Солнце. В активные периоды в хромосфере Солнца наблюдают вспышки и флоккулы. (см солнечная активность)

Солнечная корона

Солнечная корона – самая внешняя и очень разреженная часть атмосферы Солнца, продолжающаяся в виде движущейся от Солнца плазмы – солнечного ветра – в межпланетное пространство. (см. Солнечный ветер)
Между хромосферой и короной находится переходная область, плотность в которой меняется от 10 -12 до 10 -15 г/см3 (концентрация частиц – от 10 12 до 10 9 1/см3), а температура – от 1*10 4 до 1,5*10 6 К. Рост температуры, определяется быстрым падением плотности вещества с высотой и накачкой энергии за счет процессов поглощения акустических и магнитозвуковыx волн, распространяющихся от фотосферы
Корону можно условно разделить на три зоны: внутреннюю (r 2,5 RC ).
Средняя температура короны 1,5*106 К. С высотой температура короны меняется мало. Плотность короны у переходной области

Читать еще:  Спутник Амальтея: история открытия, характеристики и орбита

10 -15 г/смЗ (концентрация частиц 10 8 см-3), а на расстоянии 3RC плотность

6*10 -19 г/смЗ, (концентрация 4.10 5 см-3).
По своему составу корональный газ сходен с фотосферным. Атомы почти полностью лишены всех своих электронов, т.е. корона представляет собой практически полностью ионизированную плазму.
Структура короны довольно сложна, она включает в себя крупные образования, удаляющиеся от Солнца в виде “опахал” или в виде “лучей”. Плотность вещества в этих образованиях, по-видимому, почти на порядок выше, чем в окружающей короне.

С другой стороны, в полярных областях постоянно существуют так называемые корональные дыры – области с аномально низкими температурами, с исключительно низкой плотностью.

Темные области на снимке в рентгене– корональные дыры

Их общая площадь достигает 15% от всей площади поверхности Солнца, на низких широтах площади корональных дыр меньше 2-5% площади поверхности Солнца. Время жизни одной дыры может превышать 5 оборотов Солнца (до 20 оборотов).
Корональные дыры связаны с униполярными областями в фотосфере.
В этих областях происходит усиление истечения плазмы солнечного ветра, оказывающего существенное влияние на геофизические явления.

Яркость короны в миллион раз меньше яркости фотосферы. Наблюдать солнечную корону невооруженным глазом можно только во время полной фазы солнечных затмений. Вне затмений с поверхности Земли корону наблюдают при помощи специальных телескопов – коронографов.

Корональные транзиенты Общее название коротроживущих изменений в короне, в основоном используется для описания выходящих из С. плазменных облаков – Корональных выбросов масс (Coronal Mass Ejection).
Этими мощными выбросами плазменного вещества уносится примерно половина общей энергии солнечной вспышки. CME проходит через солнечную корону и со скоростью порядка 1000 км/с достигает орбиты Земли через 1 – 2 суток. Солнечные корпускулярные потоки, взаимодействуя с земной магнитосферой, вызывают магнитные бури и магнитосферные суббури.

Магнитное поле Солнца разделяется на два типа – общее поле и локальные поля.
Общее магнитное поле Солнца – это поле полоидального типа, вытянутое вдоль солнечных меридианов и подобное полю дипольного типа. Его напряженность на уровне фотосферы составляет 1-2 Гс. Общее поле Солнца периодически, приблизительно раз в 11 лет меняет свою полярность на противоположную. Полный период Т = 22 года.
Общее поле состоит из множества мелких структур разной полярности и размеров, напряженностью до 10-20 Гс.
Локальные магнитные поля активных образований на Солнце разделяются на биполярные (ВМ) и униполярные (UM) области. Напряженность поля |B| в ВМ-областях варьирует от 0,1 до нескольких сотен гаусс. Знак поля различен в различных частях этих областей, и, поскольку они вытянуты вдоль линии восток-запад, в них всегда можно выделить ведущую (р) и ведомую (f) полярности. Эти полярности различны в северном и южном полушариях и меняют знак с началом каждого нового 11-летнего цикла.
UM-области по сравнению с ВМ-областями располагаются ближе к полюсам и имеют меньшую напряженность магнитного поля, но большую площадь и продолжительность жизни: для UM-области характерно В

5-7 оборотов Солнца. Развитие ВМ- и UM-областей предшествует появлению активных областей на Солнце и завершается после исчезновения.

Более подробную информацию по данному вопросу можно найти в разделах СиЗиФа
ОБЗОРЫ и СТАТЬИ, а также на страницах учебника.
Специально вопросам солнечной активности посвящен богато иллюстрированный раздел проекта Э.В. Кононовича ЖИЗНЬ ЗЕМЛИ В АТМОСФЕРЕ СОЛНЦА

Также смотри родственные разделы справочника:

Ветер

Солнечная атмосфера имеет такое явление, как ветер, представленный потоком ионизированных элементов, которые выбрасываются из звезды в различных направлениях на скорости от 400 километров в секунду. В качестве источника, из которого исходит ветер, выступает солнечная корона. Её температура настолько высока, что гравитационная сила не может удерживать вещество неподалёку от поверхности, и его часть оказывается в пространстве между планетами. Несмотря на относительную изученность, многие детали, связанные с солнечным ветром, остаются неясными до сих пор.

Таким образом, солнечная атмосфера состоит из нескольких слоёв, различных по толщине, температуре, свойствам.

Ссылка на основную публикацию
Статьи на тему: