Магнитные солнечные пятна
Содержание
Начинается все с появления на поверхности визуально более светлого участка поверхности. Со временем он разрастается, а его яркость убывает. После этого на его поверхности образуются небольшие темные пятна – поры, размерами всего в несколько тысяч километров. Постепенно разрастаясь и сливаясь, они образуют пятна. Они холоднее окружающей их поверхности на две–три тысячи градусов (средняя температура поверхности Солнца – шесть тысяч градусов).
Протуберанец на Солнце
После этого магнитная петля продолжает движение наружу и тянет за собой разогретый ионизированный газ – плазму, создавая широко известные образования – протуберанцы, красивейшие петли светящегося газа, которые на протяжении десятков суток висят над видимой поверхностью Солнца, после чего плавно опускаются обратно в бушующую бездну кипящего газа.
Главной характеристикой магнитных полей этой петли является их напряженность, которую и меряют разнообразными методами.
Солнечные пятна
Уже давно, задолго до изобретения телескопов, было замечено, что иногда на Солнце появляются сравнительно большие тёмные пятна и группы пятен. В пятнах можно различить среднюю, более тёмную часть – так называемую тень и окаймляющую её – полутень. Впоследствии с помощью телескопов такие пятна стали наблюдать регулярно. Некоторые пятна держатся на Солнце по несколько дней и даже месяцев. Перемещение таких пятен от одного края диска Солнца к противоположному краю дало возможность установить, что солнечный шар вращается. По скорости движения пятен удалось определить период вращения Солнца. При этом оказалось, что различные зоны Солнца вращаются с разной скоростью: на солнечном экваторе период вращения составляет 25 суток, а ближе к солнечным полюсам – больше 30 суток. На основании этого учёные сделали также вывод, что Солнце вращается, как газообразное, а не как твёрдое тело. Пятна на Солнце изменяются, распадаются на части и исчезают, диаметр отдельных больших пятен превосходит диаметр Земли. Отдельные пятна могут достигать в поперечнике 40 тыс. километров. А самое большое из наблюдавшихся пятен достигало диаметра 185 тыс. километров. 18 сентября 2000 года была зарегистрирована группа пятен, общая площадь которой равнялась 6,5 миллиардам квадратных километров. На этой территории поверхность земного шара поместится целых 13 раз. Пятна появляются не на всей поверхности Солнца, а только в двух сравнительно нешироких поясах по обе стороны солнечного экватора от 5° до 40°. Пятна только кажутся нам темными на очень ярком фоне фотосферы. На самом деле они также испускают свет, изучение которого позволило определить их температуру. Она оказалась ниже температуры фотосферы, но все же очень высокой – около 4500°. Это значит, что пятна состоят из раскаленных газов и представляют собой воронкообразные вихревые движения. Средняя глубина пятен составляет 500 км.
Установлено, что солнечные пятна – это места выхода в солнечную атмосферу сильных магнитных полей. Магнитные поля уменьшают поток энергии идущий от недр светила к фотосфере, поэтому в месте их выхода на поверхность температура падает. Пятна холоднее окружающего их вещества в среднем на 1500°К, а следовательно, и менее ярки. Пятна появляются парами в тех местах, где линии искажённого магнитного поля выходят из поверхности и входят в неё. Пара пятен при этом образует пару полюсов поля – южный и северный. Часто, пятна возникают по несколько штук и занимают небольшую по площади область, вытянутую вдоль экватора – возникает группа пятен. Два пятна, как правило, появляются на западном и восточном краях активной области, где сильнее других развиваются. Эти пятна будут в группе главными. Их называют ведущим (головным или западным) и ведомым (хвостовым или восточным). К ним примыкают более мелкие пятна. Магнитные поля этих пятен имеют противоположенную полярность. Таково устройство наиболее распространенного типа групп пятен.
Вспышки на Солнце и магнитные бури
Солнечные вспышки
Солнечная вспышка – взрывной процесс выделения энергии (кинетической, световой и тепловой) в верхних слоях Солнца.
Вспышки охватывают все слои солнечной атмосферы: фотосферу, хромосферу и корону. Сразу отметим, что солнечные вспышки и корональные выбросы массы являются различными и независимыми проявлениями солнечной активности.
Солнечные вспышки, как правило, происходят в местах взаимодействия солнечных пятен противоположной магнитной полярности, а точнее вблизи нейтральной линии магнитного поля, разделяющей области северной и южной полярности. Энерговыделение мощной солнечной вспышки может достигать 6×10 25 Дж, что составляет 160 миллиардов мегатонн в тротиловом эквиваленте или приблизительный объем мирового потребления электроэнергии за 1 миллион лет.
Вспышки – это самые большие взрывные события Солнечной системы. Они видны яркими областями на Солнце и могут длиться от нескольких минут до нескольких часов. Фотоны от вспышки достигают Земли примерно за 8,5 минут после ее начала; далее в течение нескольких десятков минут доходят мощные потоки заряженных частиц, а облака плазмы достигают нашей планеты только через двое-трое суток.
Интенсивность вспышек на Солнце
Энергию вспышки определяют в видимом диапазоне электромагнитных волн по произведению площади свечения в линии излучения водорода, характеризующей нагрев нижней хромосферы, на яркость этого свечения, связанную с мощностью источника.
Также используют классификацию, основанную на непрерывных однородных измерениях амплитуды теплового рентгеновского всплеска в диапазоне энергий 0,5—10 кэВ (с длиной волны 0,5—8 ангстрем), проводимых некоторыми искусственными спутниками Земли.
Согласно классификации, которая была предложена в 1970 году Д.Бейкером, солнечной вспышке присваивается балл — обозначение из латинской буквы и индекса за ней. Буквой может быть A, B, C, M или X в зависимости от величины пика интенсивности рентгеновского излучения.
Вспышки на Солнце онлайн
Обозначение | Интенсивность в пике (Вт/м 2 ) |
A | меньше 10 -7 |
B | от 10 -7 до 10 -6 |
C (слабые вспышки) | от 10 -6 до 10 -5 |
М (средние вспышки) | от 10 -5 до 10 -4 |
X (сильные вспышки) | больше 10 -4 |
Выбор для классификации вспышек рентгеновского диапазона обусловлен более точной фиксацией процесса: если в оптическом диапазоне даже крупнейшие вспышки увеличивают излучение на доли процентов, то в области мягкого рентгеновского излучения (1 нанометр) — на несколько порядков, а жесткое рентгеновское излучение спокойным Солнцем не создается вообще и образуется исключительно во время вспышек.
Регистрация рентгеновского излучения Солнца, так как оно полностью поглощается атмосферой Земли, началась с первого запуска космического аппарата «Спутник-2», поэтому данные об интенсивности рентгеновского излучения солнечных вспышек до 1957 года полностью отсутствуют.
Опасны или нет? Влияние солнечных вспышек
Солнечные вспышки имеют прикладное значение при исследовании элементного состава поверхности небесного тела с разреженной атмосферой или при ее отсутствии, выступая в роли возбудителя рентгеновского излучения для рентгенофлуоресцентных спектрометров, установленных на борту космических аппаратов.
Жесткое ультрафиолетовое и рентгеновское излучение вспышек — основной фактор, ответственный за формирование ионосферы, способный также существенно менять свойства верхней атмосферы Земли: плотность ее существенно повышается, что ведет к быстрому снижению высоты орбиты искусственных спутников (до 1 километра в сутки).
Плазменные облака, выбрасываемые во время вспышек, приводят к возникновению геомагнитных бурь, которые определенным образом влияют на технику и самочувствие людей. Раздел биофизики, изучающий влияние изменений активности Солнца и вызываемых ею возмущений земной магнитосферы на организмы, называется гелиобиологией. Также вспышки создают полярное сияние, чаще всего вблизи полюсов.
Геомагнитные бури
Геомагнитная буря – возмущение геомагнитного поля длительностью от нескольких часов до нескольких суток.
Геомагнитные бури являются одним из видов геомагнитной активности. Они вызываются поступлением в окрестности Земли возмущенных потоков солнечного ветра и их взаимодействием с магнитосферой Земли.
Частота появления умеренных и сильных бурь на Земле имеет четкую корреляцию с 11-летним циклом солнечной активности: при средней частоте около 30 бурь в год их число может составлять 1-2 бури в год вблизи солнечного минимума и достигать 50 бурь в год вблизи солнечного максимума.
Классификация магнитных бурь
K-индекс – это отклонение магнитного поля Земли от нормы в течение трехчасового интервала. Индекс был введен Юлиусом Бартельсом в 1938 году и представляет собой значения от 0 до 9 для каждого трехчасового интервала (00:00 – 03:00, 03:00 – 06:00, 06:00 – 09:00 и т. д.) мирового времени.
Kp-индекс – это планетарный индекс. Вычисляется как среднее значение К-индексов, определенных на 13 геомагнитных обсерваториях, расположенных между 44 и 60 градусами северной и южной геомагнитных широт. Его диапазон также от 0 до 9.
G-индекс – пятибалльная шкала силы магнитных бурь, которая была введена Национальным управлением океанических и атмосферных исследований США (NOAA) в ноябре 1999 года. G-индекс характеризует интенсивность геомагнитного шторма по воздействию вариаций магнитного поля Земли на людей, животных, электротехнику, связь, навигацию и т. д. По этой шкале магнитные бури подразделяются на уровни от G1 (слабые бури) до G5 (экстремально сильные бури). G-индекс соответствует Kp минус 4; то есть G1 соответствует Kp=5, G2 соответствует Kp=6 и т.д.
Магнитные бури онлайн. Прогноз магнитных бурь
Роль звездных вспышек в зарождении жизни
Как ни странно, ученые полагают, что солнечные бури были ключом к зарождению жизни на Земле. Мощные солнечные взрывы, возможно, имели решающую роль в разогреве Земли. Выбрасываемая энергия превратила простые молекулы в сложные, такие как ДНК и РНК, необходимые для жизни.
Около 4 миллиардов лет назад Земля получала лишь 70% энергии от Солнца, по сравнению с тем, что мы имеем сегодня. Это означает, что наша планета должна была быть ледяным шаром. Вместо этого, геологические свидетельства говорят о том, что она была теплой и имела океаны жидкой воды. Ученые называют это «Парадокс слабого молодого Солнца».
Солнце до сих пор производит вспышки и выбросы масс, но они не являются столь частыми и интенсивными, как ранее. Более того, на сегодняшний день Земля имеет сильное магнитное поле, которое уберегает нас от большей части энергии, достигающей нашей планеты. Но наша молодая планета имела более слабое магнитное поле. Расчеты ученых показывают, что в то время частицы космической погоды путешествовали вниз по линиям магнитного поля, врезаясь в изобилие молекул азота в атмосфере, изменяя химию и создавая условия для жизни.
В тоже время, слишком большое количество энергии может быть губительно для молодых планет. Постоянная цепь звездных извержений и ливней из частиц может содрать атмосферу, если магнитосфера слишком слаба. Понимание этих процессов поможет ученым определить, какие звезды и какие планеты могут быть гостеприимными для жизни.
© 2015-2021 Ин-Спейс. Все права защищены.
Использование всех текстовых материалов без изменений разрешается только с активной гиперссылкой на издание Ин-Спейс. Все аудиовизуальные произведения являются собственностью своих авторов и правообладателей и используются только в образовательных и информационных целях.
Сетевое издание Ин-Спейс зарегистрировано в Федеральной службе по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор) 04 мая 2018 года. Свидетельство о регистрации Эл № ФС 77 – 72684.
Сайт может содержать контент, не предназначенный для лиц младше 18 лет.
Солнечное пятно как уединенная магнитная структура
Объяснение явления появления солнечных пятен основано на убедительных доказательствах наличия смешения магнитного поля и динамики плазмы вдоль границы пятна. Солнечное пятно как уединенная магнитная структура на поверхности небесного тела.
Глобальная структура магнитного поля солнечных пятен была широко изучена в 20 веке при относительно низком пространственном разрешении.
В спектре астрономического явления примечательно расщепление некоторых линий на две составные. Такое расщепление называется эффектом Зеемана: чем сильнее магнитное поле пятна, тем выразительнее этот эффект.
Расщепление спектральных линий служит доказательством того, что образования на поверхности Солнца являются гигантскими мощными магнитами. Конечно, это не железные магниты, так как кусок железа немедленно бы испарился. Магнитные поля на Солнце — проявления сильнейших электрических токов в плазме вокруг пятна. Положительные ионы движутся в одном направлении, отрицательные электроны — в противоположном.
Однако ученые предполагают, что поле в значительной мере переплетено. Поднимающиеся облака раскаленной плазмы не могут проходить сквозь переплетенные силовые линии и обходят их. По этой причине в бляшки проникает гораздо меньше энергии, чем в окружающую их поверхность.
Этим и объясняется, почему бляшки темнее и холоднее.
Пятна появляются и остаются на поверхности Солнца в совершенно разное время и после этого исчезают. Они имеют тенденцию возникать группами. Поверхность вокруг группы пятен теплее и ярче у более отдаленной бляшки.
Повышенная яркость фотосферы называется факелом. Факелы легко заметить, если группа пятен находится на краю солнечного диска.
Наружный слой солнечной атмосферы – хромосфера, вокруг группы теплее и ярче, чем в остальной части. Такие яркие и теплые области хромосферы называются флоккулами.
В группах солнечных бляшек имеют место также и другие явления, например, вспышки, протуберанцы, корональная конденсация и пр.
Все эти явления, включая пятна, факелы и флоккулы — активные образования, входящие в понятие солнечной активности.
Группа пятен со всеми проявлениями солнечной активности называется центром солнечной активности или активной областью.
Наука изучает это наиболее замечательное астрономическое явление. Кроме того его можно наблюдать с поверхности Земли в любительские инструменты как очень красивый объект. Явление плохо поддается прогнозированию, но известно только, что оно повторяется примерно через каждые 11 лет и поэтому наиболее вероятно, что пик следующей солнечной активности придется на 2022 -2023 годы.
Активность Солнца несомненно влияет и на нашу планету, и на её биосферу. Фактически, наша звезда определяет характер и ритм жизни планеты. Без неё существование Земли и жизни на ней невозможно, но оно же и главная опасность для них.
Воздействие на человека
Но красоту полярных сияний дополняют магнитные бури, воздействующие на работу некоторых приборов, да и на организм человека. Ученый А.Л. Чижевский Чижевский, Александр Леонидович советский учёный, биофизик, философ, поэт, художник. ещё в 20-х годах понял, что солнечная активность влияет на возникновение заболеваний. Особенно явно это проявляется в сердечно-сосудистых заболеваниях. Эпидемии, поражавшие человечество в разные века, тоже укладываются в теорию учёного. Чижевским была составлена хронология эпидемий чумы с середины пятого века до конца девятнадцатого. Вспышки смертельной болезни пришлись на пики солнечной активности.
Учёные из Японии установили, что вспышки на Солнце могут изменить количество лейкоцитов в крови. Более того, с конца XIX по вторую половину ХХ веков среднее количество лейкоцитов уменьшилось в три раза. Это полностью совпало с интенсивностью солнечной активности. Магнитные бури, рождаемые взрывами солнечной активности, приводят к сбоям механизма свёртывания крови. Нервные заболевания учащаются и обостряются. Человек быстрее утомляется, а количество дорожных происшествий увеличивается. Это происходит из-за влияния магнитных бурь на биоритмы мозга человека.
Изучение солнечной активности привело к созданию новых наук: гелиобиологии и солнечно-земной физики. Они призваны исследовать взаимную связь земной жизни и климата с активными солнечными проявлениями, потому что солнечная активность – главный стимулятор жизненных процессов.
Воздействие на природу
Животный и растительный миры тоже зависимы от солнечной активности. Именно в их высшие значения саранча собирается в полчища, а рыбы увеличивают свою численность. Даже популяции соболей, когда активность Солнца на пике, растут.
Всплески солнечной активности вполне способны отрицательно повлиять на функционирование систем связи, линий электропередач. Нарушаются системы навигации авиационных и космических объектов, возникают вихревые токи в трансформаторах и проводниках.