Что такое экзопланеты и как ищут жизнь во Вселенной

В слове «экзопланета» приставка «экзо» означает «вне», «снаружи». Получается, что экзопланеты — это все планеты за пределами Солнечной системы. Большинство из них, как и Земля, вращаются вокруг звезд, но встречаются и не привязанные к орбите определенной звезды.

Большинство открытых экзопланет находятся в одном регионе нашей Галактики — внутри Млечного пути. При помощи мощных телескопов ученые измеряют размеры планет, их состав и поверхность. Большая часть открытых экзопланет состоят из тех же элементов, что и планеты Солнечной системы. Отличаются только комбинации и соотношение: на некоторых больше воды и льда, на других — железа и углерода. При этом нет ни одной планеты, которая была бы идентична Земле или другим телам Солнечной системы.

Первую экзопланету обнаружили в 1992 году. С тех пор астрономы идентифицировали тысячи планет, и их число постоянно растет. С Земли не всегда просто обнаружить новые тела: не хватает мощности телескопов, и обзор может перекрываться звездами или другими планетами. Количество открытых небесных объектов может увеличиться в разы, как только ученые наладят технологию запуска космических роботизированных телескопов, которые будут отправлять на Землю данные о своих наблюдениях. Часть таких телескопов уже запущена в космос, но развитие направления поможет ускорить процесс открытия и изучения небесных тел.

Метод радиальной скорости

Метод радиальной скорости основан на возмущениях, которые планета вызывает при движении своей звезды. В самом деле, так же как звезда оказывает гравитационное воздействие на планету, последняя создает равную и противоположную силу на звезду. Очевидно, что звезда намного массивнее планеты, и поэтому влияние этой обратной силы чрезвычайно слабое.

Изменения в положении звезды под воздействием этого планетарного возмущения очень малы и их слишком трудно обнаружить в настоящее время. Поэтому метод радиальной скорости стремится измерять небольшие изменения в скорости, а не в положении звезды.

Очень эффективным способом для этого является использование эффекта Доплера. Действительно, изменения скорости звезды вдоль нашей линии прицеливания переводятся, благодаря эффекту Доплера, в небольшие смещения длины волны видимого спектра звезды. Поэтому теоретически достаточно идентифицировать определенные линии этого спектра и наблюдать небольшие изменения их длины волны с течением времени, чтобы вывести из них наличие гравитационного возмущения другим телом.

Очевидно, что эти колебания всегда очень малы и обычно обнаруживаются только тогда, когда планета производит значительные гравитационные возмущения. Это ограничивает метод лучевой скорости для массивных планет типа газового гиганта и только в том случае, если эти планеты находятся ближе к своей звезде, чем Меркурий от нашего Солнца. Когда эти условия выполняются, очень точные спектроскопические наблюдения могут выявить планету и предоставить приблизительно ее массу и информацию о ее орбите.

Что такое метод лучевых скоростей?

Представьте, что вы смотрите на машину, которая уезжает от вас. Расстояние между вами всё время увеличивается, значит, её лучевая скорость относительно вас — положительна. Если машина едет к вам и расстояние между вами уменьшается, лучевая скорость — отрицательна. В том случае, если машина кружит вокруг вас, не приближаясь и не удаляясь, её лучевая скорость равна нулю. Более формальное определение лучевой (радиальной) скорости можно найти здесь.

А теперь послушайте, что происходит с гудком машины, когда она приближается к вам и удаляется от вас:

Эффект Доплера при движении автомобиля

Сначала, когда скорость машины мала, мы слышим «настоящий» звук гудка. По мере нарастания скорости автомобиля звук издаваемого сигнала постепенно повышается. При этом, как только машина начинает удаляться от нас, мы слышим понижение частоты гудка. Этот эффект изменения частоты сигнала в зависимости от лучевой скорости называется эффектом Доплера.Фото: © wikipedia.org

Читать еще:  Галактические тусовки - Астрономия и Космос

Да-да, это тот самый «полосатый» эффект, ведь он применим к любым волнам, не только к звуку, но и к видимому свету. Например, если жёлтый фонарик быстро летит на вас, он будет казаться зелёным, если от вас — то красным.

Каким же образом эффект Доплера применим к экзопланетным системам? Рассмотрим два тела — звезду и планету. На первый взгляд может показаться, что планета обращается вокруг звезды, а звезда стоит на месте. Но на самом деле звезда тоже обращается, с тем же периодом, что и планета, описывая при этом маленький кружок вокруг центра масс системы. И если при этом система располагается по отношению к вам так, что лучевая скорость звезды для вас в некоторые моменты времени отлична от нуля, вы можете заметить эффект Доплера в такой системе и заподозрить, что вокруг звезды обращается массивное тело. Например, лучевая скорость звезды Гамма Цефея А колеблется от –27,5 м/c до +27,5 м/c из-за обращающейся вокруг неё экзопланеты.

Таким образом, когда исследователи заявляют об открытии звезды методом лучевых скоростей, они не «видят» экзопланету, что называется, своими глазами, но измеряют её влияние на звезду. Причём модуль лучевой скорости звезды будет тем больше, чем:

  • массивнее планета;
  • легче звезда;
  • меньше расстояние между звездой и планетой;
  • меньше наклон плоскости орбиты системы к нашему лучу зрения.

Аналогичная ситуация возникает и тогда, когда планеты открывают самым эффективным методом на сегодняшний день — транзитным.

Методы поиска экзопланет

Планеты, в отличие от звезд – “холодные” тела, сами по себе не излучают свет, а лишь отражающие лучи своего солнца. Поэтому планету, расположенную вдали от звезды (и тем более одиночную планету без звезды), практически невозможно обнаружить. Если же она движется вблизи звезды и хорошо освещена ее лучами, то для удаленного наблюдателя такая планета неразличима из-за гораздо более яркого блеска самой звезды.

Метод прямого экзопланет путем прямого наблюдения

Предположим, что наблюдатель находится у ближайшей к нам звезды Альфа Центавра и смотрит в сторону Солнечной системы. Тогда наше Солнце будет сиять для него так же ярко, как звезда Вега на земном небосводе. А вот блеск планет окажется очень слабым: Юпитер будет «звездочкой» 23 звездной величины, Венера – 24 величины, а Земля и Сатурн – 25 величины (т.е. планеты Солнечной системы для гипотетического наблюдения не видны даже в бинокль).

Вообще говоря, крупнейшие современные телескопы могли бы заметить такие слабые объекты, если бы на небе рядом с ними не было ярких звезд.

Но для далекого наблюдателя Солнце всегда расположено рядом с планетами: для астронома с Альфы Центавра угловое расстояние Юпитера от Солнца не превосходит 4 угловых секунд, а между Венерой и Солнцем всего 0,5 угловых секунд. Для современных телескопов заметить предельно слабое светило так близко от яркой звезды – задача непосильная, нужны специальные приборы.

Экзопланета 2M1207b нарисованная по данным космического телескопа Хаббл. Экзопланета в 4 раза массивнее Юпитера находится от нас на расстоянии в 170 световых лет

Например, изображение яркой звезды можно закрыть специальным экраном, чтобы ее свет не мешал изучать находящуюся рядом планету. Такой прибор называют «звездным коронографом». По конструкции он похож на солнечный внезатменный коронограф Лио.

Другой метод предполагает «гашение» света звезды за счет эффекта интерференции ее световых лучей, собранных двумя или несколькими расположенными рядом телескопами – так называемым «звездным интерферометром».

Поскольку звезда и расположенная рядом с ней планета наблюдаются в чуть разных направлениях, с помощью звездного интерферометра (изменяя расстояние между телескопами или правильно выбирая момент наблюдения) можно добиться почти полного гашения света звезды и, одновременно, усиления света планеты.

Читать еще:  Редкие и необычайные явления на небе - Астрономия и Космос

Правда, оба описанных прибора (коронограф и интерферометр) лишком чувствительны к влиянию земной атмосферы (а наш гипотетический наблюдатель, полагаю, будет также обитать на планете располагающей атмосферой), поэтому для успешной работы приборов, по-видимому, их придется сперва доставить на околоземную орбиту.

Метод поиска экзопланет через измерение яркости звезды

Существуют косвенные методы обнаружения экзопланет, основанные на наблюдении звезды, на фоне которой перемещается экзопланета.

Например, если Земля лежит в плоскости орбиты экзопланеты, то время от времени экзопланета должна затмевать свою звезду. Если это звезда типа нашего Солнца, а экзопланета – типа нашего Юпитера, диаметр которого в 10 раз меньше солнечного, то в результате такого затмения яркость звезды понизится на 1%, а это можно заметить с помощью телескопа.

Главная трудность в том, что доля таких экзопланет, точно ориентированных своей орбитальной плоскостью на Землю, должна быть невелика. К тому же затмение длится несколько часов, а интервал между затмениями – годы. Тем не менее уже имеются предварительные сообщения, что такие затмения наблюдались.

Существует также весьма экзотический метод поиска одиночных планет, не обращающихся вокруг звезды, а свободно «дрейфующих» в межзвездном пространстве. Такое тело можно обнаружить по эффекту «гравитационной линзы», возникающему в тот момент, когда невидимая планета проходит на фоне далекой звезды.

Своим гравитационным полем планета искажает ход световых лучей, идущих от звезды к Земле. Подобно обычной линзе, она концентрирует свет и увеличивает яркость звезды для земного наблюдателя. Это очень трудоемкий методов описка экзопланет, требующий длительного наблюдения за яркостью тысяч и даже миллионов звезд. Но автоматизация астрономических наблюдений уже позволяет его использовать.

Звездная система TRAPPIST-1 сулила множество открытий – как минимум 3 из её планет вращались в «зоне жизни» звезды. Как оказалось в итоге их звезда «бешеной», и время от времени «облучала» свои планеты просто невероятным потоком радиации. Минус одно место для поиска жизни во вселенной

Метод поиска экзопланет через измерение положения звезды

Более перспективными считаются методы поиска экзопланет, в которых измеряется движение звезды, вызванное обращением вокруг нее планеты.

В качестве примера вновь рассмотрим Солнечную систему. Сильнее всех на Солнце влияет массивный Юпитер, и в первом “грубом” приближении можно рассматривать всю нашу солнечную систему, как двойную систему крупнейших центров масс Солнце – Юпитер.

Они разделены расстоянием 5,2 а.е. и обращаются с периодом около 12 лет вокруг общего центра масс. Поскольку Солнце примерно в 1000 массивнее Юпитера, оно во столько же раз ближе к центру масс. Значит, Солнце с периодом около 12 лет обращается по окружности радиусом 5,2 а.е./1000 = 0,0052 а.е. (это чуть больше радиуса самого Солнца).

С расстояния Альфы Кентавра (4,34 св. года = 275 000 а.е.) радиус этой окружности виден под углом 0,004 угл. сек. Это очень маленький угол: под таким углом нам видится толщина карандаша с расстояния в 360 км. Но астрономы умеют измерять столь малые углы и поэтому уже несколько десятилетий ведут наблюдение за ближайшими звездами в надежде заметить их периодическое «покачивание», вызванное присутствием планет. Пока результаты неоднозначные.

Метод поиска экзопланет через измерение скорости звезды

Заметить периодические колебания звезды можно не только по изменению ее видимого положения на небе, но и по изменению расстояния до нее.

Вновь рассмотрим систему Юпитер – Солнце, имеющую отношение масс 1:1000. Поскольку Юпитер движется по орбите со скоростью 13 км/с, скорость движения Солнца по его собственной небольшой орбите вокруг центра масс этой системы составляет V = 13 м/с. Для постороннего наблюдателя, расположенного в плоскости орбиты Юпитера, Солнце с периодом около 12 лет то приближается с такой скоростью, то удаляется.

Если луч зрения наблюдателя и перпендикуляр к орбитальной плоскости планеты составляют угол i, то наблюдаемая амплитуда скорости будет меньше (V sin i). Можно ли заметить перемещение звезды с такой скоростью? Обычно для измерения скоростей звезд астрономы используют эффект Доплера.

Читать еще:  Неподвижные звезды в астрологии: как с ними работать

Он проявляется в том, что в спектре звезды, движущейся относительно земного наблюдателя, изменяются длины волны всех линий: если звезда приближается к Земле, линии смещаются к синему концу спектра, а если удаляется – к красному. До конца 1980-х годов точность измерения скорости оптической звезды этим методом была не более 500 м/с.

Но затем были разработаны принципиально новые спектральные приборы, позволившие повысить точность до 10 м/с. Тогда и стало возможным открытие экзопланет, определение их орбитальных параметров и масс (с точностью до фактора sin i, поскольку наклон орбитальной плоскости экзопланеты в большинстве случаев найти невозможно).

По-существу, этот же метод используют и радиоастрономы, с высокой точностью фиксирующие моменты прихода импульсов от радиопульсаров и тем самым определяющие периодические смещения нейтронной звезды относительно Солнца. Это позволяет обнаруживать невидимые объекты, обращающиеся вокруг радиопульсаров.

Метод поиска экзопланет через астрометрический поиск

Первые попытки обнаружить экзопланеты связаны с наблюдениями за положением близких звезд. В 1916 американский астроном Эдуард Барнард (1857–1923) обнаружил, что слабенькая красная звездочка в созвездии Змееносца быстро перемещается по небу относительно других звезд – на 10 угловых секунд в год.

Астрономы за такую немыслимую для звезд скорость назвали ее Летящей звездой Барнарда.

Хотя все звезды хаотически перемещаются в пространстве со скоростями 20–50 км/с, при наблюдении с большого расстояния эти перемещения остаются практически незаметными. Звезда Барнарда – весьма заурядное светило, поэтому возникло подозрение, что причиной ее наблюдаемого «полета» служит не особенно большая скорость, а просто необычная близость к нам. И действительно, звезда Барнарда оказалась на втором месте от Солнца после системы Альфа Кентавра.

Масса звезды Барнарда почти в 7 раз меньше массы Солнца, поэтому влияние на нее соседей-планет (если они есть) должно быть весьма заметным. Более полувека, начиная с 1938, изучал движение этой звезды американский астроном Питер ван де Камп (1901–1995).

Смещение Летящей звезды Барнарда за 16 лет – просто немыслимая скорость для звезды!

Он измерил ее положение на тысячах фотопластинок и заявил, что у звезды обнаруживается волнообразная траектория с амплитудой покачиваний около 0,02 угл. сек., следовательно вокруг нее обращается невидимый спутник. Из расчетов П. ван де Кампа следовало, что масса спутника чуть больше массы Юпитера, а радиус его орбиты 4,4 а.е. В начале 1960-х годов это сообщение облетело весь мир. Но не все астрономы согласились с выводами П. ван де Кампа.

Продолжая наблюдения и увеличивая точность измерений, Дж.Гейтвуд (G.Gatewood) и его коллеги к 1973 выяснили, что звезда Барнарда движется ровно, без колебаний, а значит массивных планет в качестве спутников не имеет.

Однако эти же работы принесли и новую находку: были замечены зигзаги в движении пятой от Солнца звезды Лаланд-21185. Сейчас получены веские доводы, что вокруг этой звезды обращаются две планеты: одна с периодом 30 лет (масса 1,6 Мю, радиус орбиты 10 а.е.) и вторая с периодом 6 лет (0,9 Мю, 2,5 а.е.). Для подтверждения этого открытия ведутся наблюдения.

В заключение

Поистине, обнаруженные планеты других звёзд являются одним из самых значительных достижений науки последних десятилетий. Разрешилась загадка, очень долго не дававшая покоя исследователям: другие планеты во Вселенной существуют! Наша Солнечная система отнюдь не уникальна, а является закономерным процессом формирования планет вокруг своих звёзд. И планетные системы имеют схожие параметры. Уникальна Солнечная система пока только в одном: до настоящего момента не удалось обнаружить миры, в которых зародился разум. Или всё-таки побеждают скептики, верящие в исключительную уникальность Земли, или ещё слишком мало данных о возможных космических оазисах. Да и приборы не обладают достаточным совершенством для глобальных открытий. Тем не менее, экзопланеты – первая, но наверняка не последняя ступенька лестницы познаний космоса.

Ссылка на основную публикацию
Статьи на тему:

Adblock
detector