Как ищут тёмную материю

Как ищут тёмную материю

«Мой старый принцип расследования состоит в том, чтобы исключить все явно невозможные предположения. Тогда то, что останется, является истиной, какой бы неправдоподобной она ни казалась», — говорил знаменитый сыщик Шерлок Холмс. Именно таким методом ученые ищут темную материю.

Стандартная модель, описывающая фундаментальные взаимодействия (электромагнитное, слабое и сильное) известных нам элементарных частиц (лептонов, кварков и бозонов), — отлично подтвержденная экспериментом теория. Однако она описывает лишь около 5% существующего вещества, остальные же 95% имеют совершенно неизвестную природу. Мы знаем только то, что эти 95%, получившие название скрытой массы или «темной материи», принимают участие в гравитационном взаимодействии с обычной материей.

Но не идем ли мы на поводу у самого названия? Может быть, никакой темной материи нет, а просто теория гравитации не работает на таких масштабах? А если она есть, в каких частицах скрывается? И как искать «то, не знаю что»? Для этого современная наука использует принцип, сформулированный Шерлоком Холмсом: «Отбросьте всё невозможное, а то, что останется, и будет ответом, каким бы невероятным он ни оказался». Явление скрытой массы может объясняться огромным количеством вероятных и невероятных, вписывающихся в современную теорию и противоречащих ей гипотез. Однако судьи, отсеивающие все невозможные варианты, — это наблюдение и эксперимент.

Загадка «скрытой массы»

В 1933 году американский астроном Фриц Цвикки исследовал скопление галактик Волосы Вероники. Цвикки выполнил оценку его массы, подсчитав примерное количество галактик в скоплении и количество звезд в галактике, и получил значение, составляющее примерно 10 13 масс Солнца. Он также решил проверить эту оценку другим способом, измерив скорости галактик: чем выше скорость, тем больше гравитационная сила, действующая на галактику, и тем больше общая масса скопления. Масса, рассчитанная Цвикки этим методом, оказалась равной 5×10 14 масс Солнца, то есть в 50 раз больше. Подобное расхождение на тот момент не было воспринято слишком серьезно, поскольку у астрономов было очень мало информации о межзвездной пыли, газе, карликовых звездах. Тогда считалось, что эта дополнительная масса может скрываться именно в них.

Гипотеза 1: межзвездная пыль и газ

В 1970 году Вера Рубин и Кент Форд изучали зависимость скорости звезд от их отдаленности от центра галактики Андромеда (так называемая кривая вращения). Так как основная часть звезд сконцентрирована вблизи центра галактики, логично предположить, что чем дальше звезда от центра, тем меньше должна быть гравитационная сила, действующая на нее, и тем меньше должна быть ее скорость. Однако оказалось, что для звезд на периферии такой закон не выполняется и кривая выходит на плато.

Кривая вращения галактики — это график зависимости орбитальной скорости звезд и газа в галактике от расстояния до ее центра. Наблюдения показывают, что по мере удаления от центра график выходит на плато

Это означало, что основная масса, которая влияет на вращение звезд, не просто скрыта, но и распределена вплоть до периферии или еще дальше. Позже подобные кривые были прорисованы для различных галактик с абсолютно тем же результатом. Для многих эллиптических галактик эти кривые не только не спадали, но и возрастали. Получается, что большая часть массы (в среднем более 90%) заключена не в звездах, и эта скрытая масса распределена далеко за областью галактического диска в виде сферического гало.

Межзвездная пыль и газовые облака теперь уже никак не могли объяснить наличие скрытой массы: частицы пыли или молекулы газа из-за взаимодействия друг с другом, трения и излучения теряли бы энергию и постепенно перетекали бы с периферии в центр. Поэтому гипотезу газопылевой природы пришлось отбросить.

Гипотеза 2: слабо излучающие астрофизические объекты

Следующая простая и очевидная гипотеза предполагала, что скрытая масса может быть заключена в каких-нибудь астрофизических объектах (MACHO — MAssive Compact Halo Object), таких как белые, красные или коричневые карлики, нейтронные звезды, черные дыры или даже массивные планеты типа Юпитера. Из-за малых размеров и слабой светимости эти объекты не видны в телескоп, и, вполне возможно, их так много, что они и обеспечивают наличие этой скрытой массы.

Но если они не видны в телескоп, как же можно их обнаружить? Когда слабосветящийся массивный объект (MACHO) оказывается между земным наблюдателем и ярким видимым объектом, он работает как гравитационная линза, и наблюдаемый объект становится ярче. Это явление называется гравитационным микролинзированием. Наличие MACHO должно было бы привести к огромному количеству событий микролинзирования. Однако наблюдения с телескопа Hubble показали, что таких событий очень мало и если такие объекты существуют, то их масса составляет меньше 20% от массы галактик, но никак не 95%.

Более того, наблюдения космического реликтового фона позволяют довольно точно оценить число барионов (протонов и нейтронов), которые могли родиться в ранней Вселенной в период нуклеосинтеза. Полученные оценки позволяют утверждать, что видимая нами барионная материя (звезды, газ, пылевые облака) — это большая часть всей барионной материи в нашей Вселенной. Поэтому скрытая масса не может состоять из барионов.

Гипотеза 3: модифицированная гравитация

А что если никакой скрытой массы вовсе нет? Это вполне возможно, если, например, теория гравитации, которую мы применяем, на таких масштабах неверна.

Чем больше гравитационная сила, действующая на объект (в данном случае галактику или отдельную звезду), тем больше ее ускорение (известный всем со времен школы второй закон Ньютона) и, соответственно, скорость, так как центростремительное ускорение пропорционально квадрату скорости. А если подкорректировать закон Ньютона? В 1983 году израильским физиком Мордехаем Милгромом была предложена гипотеза MOND (MOdified Newtonian Dynamics), в которой закон Ньютона несколько корректировался для случая, когда ускорения достаточно малы (10 −8 см/с 2 ). Такой подход хорошо объяснял кривые вращения, полученные Рубин и Фордом, и возрастающие кривые вращения для эллиптических галактик. Однако в скоплениях, где ускорения галактик куда больше ускорения единичных звезд, MOND не вносил никаких поправок для темной материи, и вопрос оставался открытым.

Читать еще:  Ученые, возможно, обнаружили совершенно новый класс черных дыр

Были и другие попытки модифицировать теорию гравитации. Сейчас существует широкий класс таких теорий, называемый параметризованным постньютоновским формализмом. Каждая отдельная теория описывается своим набором десяти стандартных параметров, определяющих отклонение от «обычной» гравитации. Какие-то из этих теорий действительно объясняют проблему скрытой массы, однако при этом появляются другие проблемы — например, массивные фотоны или хроматичность гравитационной линзы (зависимости угла отклонения света от частоты), что не наблюдается. В любом случае ни одна из этих теорий до сих пор не подтверждена наблюдениями.

Таким образом, из многочисленных гипотез, не противоречащих эксперименту, остается только одна возможная, хотя и экзотическая: темная материя — это какие-то частицы небарионной природы. Таких кандидатов в теории существует очень много, однако их подразделяют на две основные группы — холодная и горячая темная материя.

Частицы-кандидаты темной материи. В настоящее время многие гипотезы темной материи (тусклые массивные объекты, модифицированная теория гравитации) отвергнуты наблюдениями, и главными кандидатами являются слабо взаимодействующие частицы

Гипотеза 4: горячая темная материя

Горячая темная материя — это легкие частицы, движущиеся со скоростями, близкими к скорости света. Наиболее очевидный кандидат на эту роль — самое обычное нейтрино. Эти частицы имеют очень малые массы (раньше считалось, что масса равна нулю), рождаются в недрах звезд и областях звездообразования при различных термоядерных процессах и почти не взаимодействуют с барионным веществом. Однако при том количестве нейтрино, которое есть у нас во Вселенной, для объяснения с их помощью темной материи необходимо, чтобы их масса была около 10 эВ. Но экспериментальные данные показывают, что масса нейтрино не превышает долей одного электронвольта, что в сотни раз меньше, так что этот вариант, по-видимому, отпадает. Еще один вероятный кандидат на звание темной материи — так называемые стерильные нейтрино, гипотетический массивный четвертый вариант нейтрино, не принимающий участия в слабом взаимодействии. Однако такие частицы в экспериментах пока не обнаружены, и факт их существования все еще находится под вопросом.

Космологические наблюдения последних лет показывают, что горячая темная материя (если она существует) может составлять не более 10% от всей темной материи. Дело в том, что различные типы темной материи предполагают различные сценарии формирования галактик. В сценарии горячей темной материи (top-down, сверху вниз) в результате эволюции сперва формируются большие области, наполненные веществом, которые затем схлопываются в отдельные мелкие скопления и в итоге превращаются в галактики. В сценарии холодной темной материи (bottom-up, снизу вверх) сперва формируются мелкие карликовые галактики и скопления, которые затем образуют более крупные структуры. Наблюдения и компьютерное моделирование показывают, что в нашей Вселенной реализуется именно этот сценарий, что указывает на явное доминирование холодной темной материи.

Гипотеза 5: холодная темная материя

Гипотеза холодной темной материи на сегодняшний день считается самой вероятной. Гипотетические частицы холодной темной материи — медленные (нерелятивистские), они очень слабо взаимодействуют друг с другом и с обычной материей и не излучают фотонов. Они подразделяются на слабо взаимодействующие массивные частицы (WIMP — weakly interacting massive particles) и слабо взаимодействующие легкие частицы (WISP — weakly interacting slim particles).

WIMP — это в основном частицы из теории суперсимметрии (суперсимметричные партнеры обычных частиц Стандартной модели) с массами больше нескольких килоэлектронвольт, такие как фотино (суперпартнер фотона), гравитино (суперпартнер гипотетического гравитона), и т. д. Наилучшим кандидатом на звание частицы темной материи из числа WIMP ученые сейчас считают нейтралино — это квантовая «смесь» суперпартнеров Z-бозона, фотона и бозона Хиггса.

Вимпы в ксеноне

Поиск WIMP основан на том, что они хотя и очень слабо, но все же взаимодействуют с обычным веществом

При столкновении с ядрами рабочего тела в детекторе могут излучаться фотоны (сцинтилляция), которые можно зарегистрировать с помощью фотоумножителей. Кроме того, вимпы могут ионизировать атомы рабочего тела, что тоже можно обнаружить. Эти два способа обычно комбинируют, чтобы отсеять шум — взаимодействия с другими частицами, космическими лучами и т. п. — и выделить только события, напоминающие столкновения с частицами темной материи. В качестве рабочего тела обычно используют жидкий ксенон. Попытка обнаружить слабо взаимодействующие массивные частицы (WIMP) в эксперименте LUX с помощью бассейна, заполненного 400 кг жидкого ксенона, не увенчалась успехом, но сейчас идет подготовка нового эксперимента DARWIN.

В нем для детектирования WIMP будет использовано 25 т ксенона.

Основной кандидат из группы WISP — аксион, возникающий в теории сильного взаимодействия и имеющий очень малую массу. Эта очень легкая (миллионные доли электронвольта) стабильная и электрически нейтральная частица способна в очень сильных магнитных полях превращаться в фотон-фотонную пару, что дает намек на то, как можно попытаться ее обнаружить в эксперименте.

Не замечать препятствий

В известном фильме «Чародеи» описан рецепт прохождения сквозь стену: «Видеть цель, верить в себя и не замечать препятствий»

По подобной схеме планируется искать аксион — легкую незаряженную частицу, предсказанную в рамках квантовой хромодинамики. Аксион слабо взаимодействует с барионным веществом, поэтому основные надежды ученые возлагают на его поведение в очень сильных магнитных полях. Если направить лазерное излучение на непрозрачную стенку, в области которой создать с помощью сверхпроводящих магнитов очень мощное магнитное поле (десятки тесла), фотон в этом поле может превратиться в аксион, который пройдет сквозь эту стенку буквально «не заметив ее», а за ней снова превратится в фотон. Понятно, что такие события будут происходить редко, но при помощи чувствительных детекторов их можно обнаружить.

В 2007 году в немецкой ускорительной лаборатории DESY начался трехлетний эксперимент Any Light Particle Search, ALPS-I, а три года назад был запущен эксперимент ALPS-IIа, продолжение которого (ALPS-IIc) намечено на ближайшие годы. Эксперимент ADMX (Axion Dark Matter eXperiment) и его нынешнее продолжение ADMX-HF (High Frequency) в Центре экспериментальной ядерной физики и астрофизики (CENPA) в Университете штата Вашингтон также используют сильное магнитное поле сверхпроводящего магнита, в котором аксионы должны превращаться в фотоны.

Читать еще:  Лунный календарь садовода и огородника на 28 январь 2022 года

Впрочем, несмотря на многочисленные попытки, пока что обнаружить WIMP, аксионы или стерильные нейтрино не удалось. Однако отрицательный результат в науке — тоже важный результат, так как он позволяет отсеять те или иные параметры частиц, например, ограничить диапазон возможных масс. Из года в год все новые и новые наблюдения и эксперименты в ускорителях дают новые, более строгие ограничения на массу и другие параметры частиц темной материи. Таким образом, откинув все невозможные варианты и сузив круг поисков, мы становимся все ближе к пониманию того, из чего же все-таки состоит 95% материи в нашей Вселенной.

Новая физика темной материи: зачем ее искать и как она будет работать?

Темная материя не излучает и не поглощает свет, практически не взаимодействует с «обычной» материей, ученым пока не удалось поймать ни одной «темной» частицы. Но без нее не могла бы существовать знакомая нам Вселенная, да и мы сами. Чем поможет и что объяснит изучение темной материи?

Читайте «Хайтек» в

Что такое темная материя?

Это такая гипотетическая форма материи, которая не участвует в электромагнитном взаимодействии и поэтому недоступна прямому наблюдению. Она составляет четверть массы энергии Вселенной и проявляется только в гравитационном взаимодействии.

Звезды производят 100% света, который мы видим во Вселенной, но всего 2% ее массы. Когда мы смотрим на движения галактик, скоплений и прочего, то находим, что количество гравитационной массы перевешивает звездную массу в 50 раз. Можно было бы подумать, что другие типы обычной материи могли бы объяснить эту разницу.

  • Видимое вещество — 5%.
  • Нейтрино — 0,3–3%.
  • Барионная темная материя — 4–5%.
  • Небарионная темная материя — 20–25%.
  • Темная энергия — 70–75%.

Но даже если суммировать все эти компоненты вместе, мы получим всего 15–17% общего количества вещества, которое необходимо для объяснения гравитации. Для остального движения, что мы видим, нам нужна форма материи, которая не только отличается от протонов, нейтронов и электронов, но и не соответствует ни одной известной частице Стандартной модели. Нам нужна в некотором роде темная материя.

Состав и природа темной материи на настоящий момент неизвестны. В рамках общепринятой космологической модели наиболее вероятной считается модель холодной темной материи. Наиболее вероятные кандидаты на роль частиц темной материи — вимпы. Несмотря на активные поиски, экспериментально они пока не обнаружены.

Зачем нам нужна темная материя?

Темная материя нам нужна не только для объяснения астрофизических явлений вроде галактического вращения, движения скоплений и их столкновений, но и для объяснения самого происхождения жизни.

Чтобы объяснить почему, нужно вспомнить, что Вселенная началась с горячего и плотного состояния — Большого взрыва, когда все было в виде практически однородного моря отдельных, свободных, высокоэнергетических частиц. По мере охлаждения и расширения Вселенной образовались протоны, нейтроны и легчайшие ядра (водород, гелий, дейтерий и немного лития), но ничего больше. Только спустя десятки или сотни миллионов лет назад эта материя коллапсировала в достаточно плотные регионы, чтобы образовать звезды и галактики.

Все это произошло бы, хотя и немного иначе, с темной материей или без нее. Но чтобы элементы, необходимые для жизни, расплодились в изобилии — углерод, кислород, азот, фосфор, сера — их нужно выплавлять в ядрах самых массивных звезд во Вселенной. Чтобы из них образовались твердые планеты, органические молекулы и жизнь, им сперва нужно выбросить эти тяжелые атомы в межзвездную среду, где они снова станут звездами, уже следующими поколениями. Для этого нужен взрыв сверхновой.

Насколько сегодня ученые уверены, что темная материя действительно существует?

Главное свидетельство — это наблюдения флуктуаций реликтового излучения, то есть результаты, которые за последние 15 лет получили космические аппараты WMAP и «Планк».

Они с высокой точностью измеряли возмущение температуры космического микроволнового фона, то есть реликтового излучения. Эти возмущения сохранились с эпохи рекомбинации, когда ионизованный водород превратился в нейтральные атомы.

Эти измерения показали присутствие флуктуаций, очень небольших, примерно в одну десятитысячную Кельвина. Но когда они стали сравнивать эти данные с теоретическими моделями, то обнаружили важные отличия, которые нельзя объяснить никак иначе, кроме как присутствием темной материи. Благодаря этому они с точностью до процентов смогли посчитать доли темной и обычной материи во Вселенной.

Состав темной материи

По какой причине это происходит и каков состав темной материи, нам до сих пор точно не известно, однако существует три версии того, что это такое.

  1. Самая простая определяет ее как космологическую константу, которая остается неизменной и наполняет собой все пространство космоса. Как постоянная она присутствует в неизменной форме в любой отдельно взятой массе. Другое название — энергия вакуума.
  2. Вторая теория совершенно обратная, согласно ей темная материя — это квинтэссенция космоса, некое постоянно изменяющееся в пространстве и времени поле. Это альтернативный вариант описания темной энергии, который был выдвинут в конце XX века астрофизиком Кристофом Веттерихом. Исходя из этой концепции, Вселенная расширяется чуть медленнее, чем в рамках теории о постоянной константе.
  3. Третья теория для скептиков — темной энергии на самом деле не существует, это всего лишь еще неизученные свойства гравитации, которая на столь далеком расстоянии действует несколько иначе.

Что дальше?

Исследования и работы на тему изучения темной материи продолжаются, так как до сих пор у нас нет однозначного ответа на вопрос, существует ли эта субстанция.

Накануне стало известно о новой работе астрофизиков: они обнаружили в реликтовом излучении Вселенной намеки на нарушение пространственной четности. Иными словами, они стали на шаг ближе к открытию «новой физики».

Свет – это распространяющаяся электромагнитная волна. Когда он состоит из волн, колеблющихся в определенном направлении, физики называют его «поляризованным». Свет космического микроволнового фона рассеялся через 400 тыс. лет после Большого взрыва, поскольку путешествовал по Вселенной в течение 13,8 млрд лет.

Если темная материя или темная энергия взаимодействуют со светом космического микроволнового фона таким образом, что нарушает симметрию четности, мы можем найти его след в данных поляризации.

Юто Минами, один из авторов исследования

По его словам, благодаря новой методике ученые смогут максимально точно оценить, насколько сильно пыль Млечного Пути влияет на измерение поляризации реликтового излучения.

Читать еще:  Темная материя: что это такое, как мы узнаем, что она есть, и найдем ли мы ее?

Расстояние, которое проходит свет от пыли в пределах Млечного Пути, намного короче, чем расстояние космического микроволнового фона. Это означает, что на излучение пыли не влияют ни темная материя, ни темная энергия. Исследователи выяснили, что с вероятностью 99,2% темная материя и темная энергия действительно нарушают принцип четности.

Почему открытие темной материи важно для человечества

Темная материя давно перестала быть локальной проблемой отдельной науки. Узнав ее природу, мы гораздо лучше поймем, как устроен наш мир и, возможно, получим доступ к новым видам дешевой энергии и инновационным материалам.

В 1888 году Генрих Герц доказал существование электромагнитных волн (обратите внимание, какая красивая цифра — 1888!). За этим последовал шквал открытий. Ученые узнали, как устроен атом, открыли, что существуют галактики, начали использовать новые виды энергии, ранее недоступные человечеству. И наша жизнь кардинально изменилась!

Сейчас 21-й год XXI века (не менее красивая цифра). И новым сравнимым по масштабу открытием может быть природа темной материи.

Даже если выяснится, что ее нет и это нелепая гипотеза, это приведет к перевороту в современной физике. Такое уже было в нашей истории. Ведь открытие электромагнитных волн отправило в небытие понятие «эфира», в котором якобы движутся все космические объекты. Никакого эфира нет, но это было важно доказать для дальнейшего прогресса в физике.

Что же представляет собой темная материя. Четыре гипотезы

Предположений о том, что же такое темная материя, в современной физике огромное количество. Но глобально их все можно свести к четырем типам:

1. «Обычное» вещество. Темная материя может представлять собой совокупность черных дыр, нейтронных звезд, планет-изгоев и т.п. То есть различные объекты, которые трудно обнаружить.

Эта гипотеза считалась весьма вероятной на заре исследования темной материи. Сейчас же к ней относятся скептически, ведь черные дыры можно отлавливать по их взаимодействию с окружающей материей.

По оценкам астрофизиков, на все эти объекты может приходиться максимум 10% вещества галактик. Но никак не 80%.

2. Темная материя состоит из частиц, которые мы еще не открыли. Вероятнее всего, эти частицы должны быть довольно крупными, так как проявляют себя в гравитационном взаимодействии. И эти частицы не заряжены, иначе они проявляли бы себя в электромагнитном взаимодействии.

Частицы темной материи, скорее всего, и сейчас прошивают Землю, пролетая сквозь нее с огромными скоростями. Но никак не взаимодействуют с ней. С одной стороны, их трудно поймать, с другой — от них трудно экранироваться. И это плюс — значит, частицы темной материи есть везде. Осталось только обнаружить их.

Сейчас по всему миру пытаются эти частицы отловить. Напрямую это сделать очень сложно (они же, как мы помним, «не любят» взаимодействовать с приборами).

Возможно, поможет косвенный метод — когда мы зафиксируем взаимодействие этих неведомых частиц с другими и увидим их косвенные проявления, например в виде фотонов.

3. Что-то не так с гравитацией. Точнее, с гравитацией как силой природы всё прекрасно. Что-то не так с нашей теорией гравитации.

«Зачем плодить новые странные сущности и частицы? Давайте пересмотрим теорию гравитации», — говорят адепты этой гипотезы.

Альтернативные теории гравитации (например, модифицированная ньютоновская динамика (MOND) способны объяснить отдельные явления. Но пока не удалось создать теорию гравитации, которая объяснит все явления в совокупности и непротиворечиво.

4. Темной материи не существует. Это как раньше с эфиром. Все думали, что он есть (иначе как световые волны могут путешествовать по пустому пространству?). Но оказалось, что свет — не только частицы, но и волна, и эфир для перемещения ему не нужен. Так и тут. Возможно, у уже известных законов физики есть обратная сторона, которую мы не знаем. Но, скорее всего, он завязан на предыдущих сценариях.

Что даст человечеству открытие темной материи

Мы знаем 118 природных элементов таблицы Менделеева. И это лишь 20% вещества. Представляете, какие тайны могут быть сокрыты в остальных 80%?

Новые материалы и технологии. Древние греки знали об электричестве, но оно было для них чем-то вроде фокуса. Ведь забавно, как к расческе после причесывания притягиваются кусочки бумаги!

Когда журналист спросил Максвелла, зачем нужны его уравнения поля, ученый развел руками: он просто описал взаимодействие, существующее в природе. А теперь жизнь невозможно представить без электричества.

Но только когда мы постигли природу электричества, человечество пошло вперед семимильными шагами. Греки и понятия не имели, что подобные технологии возможны!

Теодор Мейман Фото: ТАСС

Когда в 1960 году Теодор Мейман представил свой первый лазер, он даже близко не представлял, как и зачем его можно использовать. А теперь он активно применяется в медицине, химии и навигации.

Понимание темной материи может теоретически дать нам доступ к энергии, которая будет намного эффективнее электричества.

Освоение космоса. Будущее человечества неизбежно связано с космической экспансией.

На Земле не так безопасно, как кажется. Человечество развилось в период относительного спокойствия. Однако за всю биологическую историю планеты было пять случаев крупного массового вымирания видов и еще 20 — менее масштабных. И только освоение других планет (говоря экономическим термином, диверсификация жизни) позволит увеличить шансы на выживание.

А как осваивать космос, путешествовать в межзвездном пространстве, если мы не знаем, из чего состоит 80% его вещества?

Мировоззрение. Кроме практической пользы будет польза философская. Мы серьезно уточним ответ на вопрос, как устроена наша Вселенная. И почему она расширяется с ускорением.

В XIX–XX веках был расцвет философии. Создавались мировоззренческие концепции, которые помогали человечеству определиться с целями и установить моральные границы. Сейчас же философия пребывает в стагнации. Искать смысл жизни в накоплении и потреблении — слишком примитивная задача. Религиозные и идеалистические мировоззрения — в очевидном кризисе.

Человечество не может развиваться без смысла. Это наша важная особенность как вида. По мнению Юваля Ноя Харари, автора книги «Sapiens. Краткая история человечества», единственное отличие человека от других животных в том, что мы можем объединиться одной идеей и вместе работать над ее воплощением.

Нужны новые крупные научные открытия, чтобы человечество смогло найти новые мировоззренческие смыслы. Иначе как нам двигаться дальше?

Ссылка на основную публикацию
Статьи на тему: