Что такое космический микроволновый фон

Что такое космический микроволновый фон?

Космический микроволновый фон – это остаточное тепло, оставшееся с первых лет сразу после Большого взрыва. Это важнейшее свидетельство в поддержку теории большого взрыва.

Предполагается, что наша Вселенная началась с Большого взрыва; Вселенная была упакована в крохотное пространство, которое взорвалось и сформировало космос, который мы сейчас видим вокруг нас. Одним из наиболее важных доказательств, подтверждающих эту теорию, является остаточное излучение, которое все еще можно найти в пустых просторах космоса – космический микроволновый фон.

Что это такое космическое микроволновое фоновое излучение

В официальной науке реликтовое излучение предпочитают называть «космическим микроволновым фоновым излучением» (англ. cosmic microwave background или сокращённо CMB). «Реликтовым излучением» его начали величать с подачи русского астрофизика И. С. Шкловского, который и ввёл в обиход этот термин.

Если говорить простым языком, CMB — это слабое свечение, которое наполняет Вселенную, падая на Землю и другие космические объекты со всех сторон с почти равномерной интенсивностью. Это остаточная теплота творения — послесвечение большого взрыва, которое течёт в пространстве в течение последних

14 миллиардов лет, подобно теплу от нагретого камина, огонь, который уже погас.

Реликтовое излучение — это по сути электромагнитные волны, которые разошлись по ткани пространства-времени в самую раннюю космологическую эпоху, и пронизывают весь мир. Считается, что оно образовалось примерно через 380 000 лет после Большого взрыва и несёт информацию о том, как образовались первые звёзды и галактики. Хотя это излучение невидимо с помощью оптических телескопов, радиотелескопы улавливают слабый сигнал (или фон), который является самым сильным в микроволновой области радиоспектра.

Читать еще:  Орбитальный период вращения Меркурия составляет 88 дней

Карта (панорама) анизотропии реликтового излучения (горизонтальная полоса — засветка от галактики Млечный Путь). Красные цвета означают более горячие области, а синие цвета — более холодные области. По данным спутника WMAP

История исследования

Реликтовое излучение было предсказано Георгием Гамовым, Ральфом Альфером и Робертом Германом в 1948 году на основе созданной ими первой теории горячего Большого взрыва. Более того, Альфер и Герман смогли установить, что температура реликтового излучения должна составлять 5 К, а Гамов дал предсказание в 3 К [2] . Хотя некоторые оценки температуры пространства существовали и до этого, они обладали несколькими недостатками. Во-первых, это были измерения лишь эффективной температуры пространства, не предполагалось, что спектр излучения подчиняется закону Планка. Во-вторых, они были зависимы от нашего особого расположения на краю галактики Млечный Путь и не предполагали, что излучение изотропно. Более того, они бы дали совершенно другие результаты, если бы Земля находилась где-либо в другом месте Вселенной.

Результаты Гамова широко не обсуждались. Однако они были вновь получены Робертом Дикке и Яковом Зельдовичем в начале 60-х годов. В 1964 году это подтолкнуло Дэвида Тодда Вилкинсона и Питера Ролла, коллег Дикке по Принстонскому университету, к созданию радиометра Дикке для измерения реликтового излучения.

В 1965 году Арно Пензиас и Роберт Вудроу Вильсон из Bell Telephone Laboratories в Холмдейле (штат Нью-Джерси) построили радиометр Дикке, который они намеревались использовать не для поиска реликтового излучения, а для экспериментов в области радиоастрономии и спутниковых коммуникаций. При калибровке прибора выяснилось, что антенна имеет избыточную температуру в 3,5 К, которую они не могли объяснить. Получив звонок из Холдмдейла, Дикке остроумно заметил: «Мы сорвали куш, парни». Встреча между группами из Принстона и Холмдейла определила, что такая температура антенны была вызвана реликтовым излучением. В 1978 году Пензиас и Вилсон получили Нобелевскую премию за их открытие.

Читать еще:  Что такое эффект наблюдателя в квантовой механике?

В 1983 году был проведён первый эксперимент, РЕЛИКТ-1, по измерению реликтового излучения с борта космического аппарата. В январе 1992 года на основании анализа данных эксперимента РЕЛИКТ-1 российские учёные объявили об открытии анизотропии реликтового излучения. Тем не менее, в 2006 году Нобелевская премия по физике за это была присуждена американцам, объявившим о подобном открытии тремя месяцами позже на основании данных эксперимента COBE. [3]

Спектрофотометр дальнего инфракрасного излучения FIRAS, установленный на спутнике NASA Cosmic Background Explorer, выполнил наиболее точные на сегодняшний день измерения спектра реликтового излучения. Они подтвердили его соответствие спектру излучения абсолютно чёрного тела с температурой 2,725 К.

Наиболее подробную карту реликтового излучения удалось построить в результате работы американского космического аппарата

Большое холодное пятно

Это изображение микроволнового фонового излучения показывает расположение Большого холодного пятна. Источник: ЕКА.

Итак, реликтовое излучение присутствует везде, в какую бы сторону мы не смотрели. И хотя его распределение очень однородно, существуют и крупные аномалии. Из них наиболее яркой и выделяющейся среди других является область пространства под названием Большое холодное пятно, или Сверхпустота Эридана. Температура здесь всего на 0,00015 градусов ниже, чем у всего, что ее окружает. Однако природа такого явления остается загадкой. Хотя и существует несколько гипотез, предлагающих объяснения этой аномалии.

Одно из самых популярных предположений гласит, что Большое холодное пятно создается неким космическим супервакуумом. Другое предположение сообщает нам совсем странную вещь – Большое холодное пятно может быть шрамом. Следом, оставшимся от столкновения Вселенных…

И еще здесь относительно небольшое количество галактик. То есть, помимо того, что здесь холодно, здесь еще и практически пусто.

Сверхпустота Эридана – это проблема для ученых. Потому что стандартная космологическая модель не может удовлетворительно объяснить существование такого пятна.

Читать еще:  Лунный календарь стрижек на 28 сентябрь 2021 года

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Что дает нам изучение реликтового излучения?

Ранняя Вселенная была холодной, очень холодной. Почему Вселенная была такой холодной, и что случилось, когда началось расширение вселенной? Можно предположить, что из-за большого взрыва случился выброс огромного количества сгустков энергии за пределы вселенной, затем Вселенная остыла, почти замерзла, но со временем энергия начала собираться в сгустки снова, и возникла некая реакция, которая и запустила процесс расширения вселенной. Тогда откуда взялась темная материя и взаимодействует ли она с реликтовым излучением? Возможно реликтовое излучение – это результат разложения темной материи, что более логично, чем остаточное излучение большого взрыва. Поскольку темная энергия может являться антиматерией и частицы темной материи, сталкиваясь с частицами материи, образуют в материальном и антиматериальном мире излучение подобно реликтовому. На сегодняшний день это самая свежая, неизученная область науки, в которой можно достичь успехов и запечатлиться в истории науки и общества.

Ссылка на основную публикацию
Статьи на тему: